5,448 research outputs found

    Error Analysis of Diffusion Approximation Methods for Multiscale Systems in Reaction Kinetics

    Get PDF
    Several different methods exist for efficient approximation of paths in multiscale stochastic chemical systems. Another approach is to use bursts of stochastic simulation to estimate the parameters of a stochastic differential equation approximation of the paths. In this paper, multiscale methods for approximating paths are used to formulate different strategies for estimating the dynamics by diffusion processes. We then analyse how efficient and accurate these methods are in a range of different scenarios, and compare their respective advantages and disadvantages to other methods proposed to analyse multiscale chemical networks.Comment: 17 pages, 8 figure

    A Constrained Approach to Multiscale Stochastic Simulation of\ud Chemically Reacting Systems

    Get PDF
    Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper we introduce a multiscale methodology suitable to address this problem. It is based on the Conditional Stochastic Simulation Algorithm (CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values for the slow variables. In the Constrained Multiscale Algorithm (CMA) a single realization of the CSSA is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a similar manner to the constrained mean-force computations in other applications such as molecular dynamics. We then show how using the ensuing Stochastic Differential Equation (SDE) approximation, we can in turn approximate average switching times in stochastic chemical systems

    Jump-Diffusion Approximation of Stochastic Reaction Dynamics: Error bounds and Algorithms

    Full text link
    Biochemical reactions can happen on different time scales and also the abundance of species in these reactions can be very different from each other. Classical approaches, such as deterministic or stochastic approach, fail to account for or to exploit this multi-scale nature, respectively. In this paper, we propose a jump-diffusion approximation for multi-scale Markov jump processes that couples the two modeling approaches. An error bound of the proposed approximation is derived and used to partition the reactions into fast and slow sets, where the fast set is simulated by a stochastic differential equation and the slow set is modeled by a discrete chain. The error bound leads to a very efficient dynamic partitioning algorithm which has been implemented for several multi-scale reaction systems. The gain in computational efficiency is illustrated by a realistically sized model of a signal transduction cascade coupled to a gene expression dynamics.Comment: 32 pages, 7 figure

    Constrained Approximation of Effective Generators for Multiscale Stochastic Reaction Networks and Application to Conditioned Path Sampling

    Full text link
    Efficient analysis and simulation of multiscale stochastic systems of chemical kinetics is an ongoing area for research, and is the source of many theoretical and computational challenges. In this paper, we present a significant improvement to the constrained approach, which is a method for computing effective dynamics of slowly changing quantities in these systems, but which does not rely on the quasi-steady-state assumption (QSSA). The QSSA can cause errors in the estimation of effective dynamics for systems where the difference in timescales between the "fast" and "slow" variables is not so pronounced. This new application of the constrained approach allows us to compute the effective generator of the slow variables, without the need for expensive stochastic simulations. This is achieved by finding the null space of the generator of the constrained system. For complex systems where this is not possible, or where the constrained subsystem is itself multiscale, the constrained approach can then be applied iteratively. This results in breaking the problem down into finding the solutions to many small eigenvalue problems, which can be efficiently solved using standard methods. Since this methodology does not rely on the quasi steady-state assumption, the effective dynamics that are approximated are highly accurate, and in the case of systems with only monomolecular reactions, are exact. We will demonstrate this with some numerics, and also use the effective generators to sample paths of the slow variables which are conditioned on their endpoints, a task which would be computationally intractable for the generator of the full system.Comment: 31 pages, 7 figure

    Transition manifolds of complex metastable systems: Theory and data-driven computation of effective dynamics

    Get PDF
    We consider complex dynamical systems showing metastable behavior but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics
    corecore