989 research outputs found

    Random Beamforming over Correlated Fading Channels

    Full text link
    We study a multiple-input multiple-output (MIMO) multiple access channel (MAC) from several multi-antenna transmitters to a multi-antenna receiver. The fading channels between the transmitters and the receiver are modeled by random matrices, composed of independent column vectors with zero mean and different covariance matrices. Each transmitter is assumed to send multiple data streams with a random precoding matrix extracted from a Haar-distributed matrix. For this general channel model, we derive deterministic approximations of the normalized mutual information, the normalized sum-rate with minimum-mean-square-error (MMSE) detection and the signal-to-interference-plus-noise-ratio (SINR) of the MMSE decoder, which become arbitrarily tight as all system parameters grow infinitely large at the same speed. In addition, we derive the asymptotically optimal power allocation under individual or sum-power constraints. Our results allow us to tackle the problem of optimal stream control in interference channels which would be intractable in any finite setting. Numerical results corroborate our analysis and verify its accuracy for realistic system dimensions. Moreover, the techniques applied in this paper constitute a novel contribution to the field of large random matrix theory and could be used to study even more involved channel models.Comment: 35 pages, 5 figure

    Integer-Forcing MIMO Linear Receivers Based on Lattice Reduction

    Full text link
    A new architecture called integer-forcing (IF) linear receiver has been recently proposed for multiple-input multiple-output (MIMO) fading channels, wherein an appropriate integer linear combination of the received symbols has to be computed as a part of the decoding process. In this paper, we propose a method based on Hermite-Korkine-Zolotareff (HKZ) and Minkowski lattice basis reduction algorithms to obtain the integer coefficients for the IF receiver. We show that the proposed method provides a lower bound on the ergodic rate, and achieves the full receive diversity. Suitability of complex Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm (CLLL) to solve the problem is also investigated. Furthermore, we establish the connection between the proposed IF linear receivers and lattice reduction-aided MIMO detectors (with equivalent complexity), and point out the advantages of the former class of receivers over the latter. For the 2×22 \times 2 and 4×44\times 4 MIMO channels, we compare the coded-block error rate and bit error rate of the proposed approach with that of other linear receivers. Simulation results show that the proposed approach outperforms the zero-forcing (ZF) receiver, minimum mean square error (MMSE) receiver, and the lattice reduction-aided MIMO detectors.Comment: 9 figures and 11 pages. Modified the title, abstract and some parts of the paper. Major change from v1: Added new results on applicability of the CLLL reductio

    Filter and nested-lattice code design for fading MIMO channels with side-information

    Full text link
    Linear-assignment Gel'fand-Pinsker coding (LA-GPC) is a coding technique for channels with interference known only at the transmitter, where the known interference is treated as side-information (SI). As a special case of LA-GPC, dirty paper coding has been shown to be able to achieve the optimal interference-free rate for interference channels with perfect channel state information at the transmitter (CSIT). In the cases where only the channel distribution information at the transmitter (CDIT) is available, LA-GPC also has good (sometimes optimal) performance in a variety of fast and slow fading SI channels. In this paper, we design the filters in nested-lattice based coding to make it achieve the same rate performance as LA-GPC in multiple-input multiple-output (MIMO) channels. Compared with the random Gaussian codebooks used in previous works, our resultant coding schemes have an algebraic structure and can be implemented in practical systems. A simulation in a slow-fading channel is also provided, and near interference-free error performance is obtained. The proposed coding schemes can serve as the fundamental building blocks to achieve the promised rate performance of MIMO Gaussian broadcast channels with CDIT or perfect CSITComment: submitted to IEEE Transactions on Communications, Feb, 200
    • …
    corecore