1,064 research outputs found

    A first-order stochastic primal-dual algorithm with correction step

    Get PDF
    We investigate the convergence properties of a stochastic primal-dual splitting algorithm for solving structured monotone inclusions involving the sum of a cocoercive operator and a composite monotone operator. The proposed method is the stochastic extension to monotone inclusions of a proximal method studied in {\em Y. Drori, S. Sabach, and M. Teboulle, A simple algorithm for a class of nonsmooth convex-concave saddle-point problems, 2015} and {\em I. Loris and C. Verhoeven, On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty, 2011} for saddle point problems. It consists in a forward step determined by the stochastic evaluation of the cocoercive operator, a backward step in the dual variables involving the resolvent of the monotone operator, and an additional forward step using the stochastic evaluation of the cocoercive introduced in the first step. We prove weak almost sure convergence of the iterates by showing that the primal-dual sequence generated by the method is stochastic quasi Fej\'er-monotone with respect to the set of zeros of the considered primal and dual inclusions. Additional results on ergodic convergence in expectation are considered for the special case of saddle point models

    Scalable Peaceman-Rachford Splitting Method with Proximal Terms

    Full text link
    Along with developing of Peaceman-Rachford Splittling Method (PRSM), many batch algorithms based on it have been studied very deeply. But almost no algorithm focused on the performance of stochastic version of PRSM. In this paper, we propose a new stochastic algorithm based on PRSM, prove its convergence rate in ergodic sense, and test its performance on both artificial and real data. We show that our proposed algorithm, Stochastic Scalable PRSM (SS-PRSM), enjoys the O(1/K)O(1/K) convergence rate, which is the same as those newest stochastic algorithms that based on ADMM but faster than general Stochastic ADMM (which is O(1/K)O(1/\sqrt{K})). Our algorithm also owns wide flexibility, outperforms many state-of-the-art stochastic algorithms coming from ADMM, and has low memory cost in large-scale splitting optimization problems
    • …
    corecore