1,662 research outputs found

    Delays Associated with Elementary Processes in Nuclear Reaction Simulations

    Get PDF
    Scatterings, particularly those involving resonances, and other elementary processes do not happen instantaneously. In the context of semiclassical nuclear reaction simulations, we consider delays associated with an interaction for incident quantum wave-packets. As a consequence, we express delays associated with elementary processes in terms of elements of the scattering matrix and phase shifts for elastic scattering. We show that, to within the second order in density, the simulation must account for delays in scattering consistently with the mean field in order to properly model thermodynamic properties such as pressure and free-energy density. The delays associated with nucleon-nucleon and pion-nucleon scattering in free space are analysed with their nontrivial energy dependence. Finally, an example of s-channel scattering of massless partons is studied, and scattering schemes in nuclear reaction simulations are investigated in the context of scattering delays.Comment: 45 pages, 5 uuencoded Postscript figure

    Isomerization dynamics of a buckled nanobeam

    Full text link
    We analyze the dynamics of a model of a nanobeam under compression. The model is a two mode truncation of the Euler-Bernoulli beam equation subject to compressive stress. We consider parameter regimes where the first mode is unstable and the second mode can be either stable or unstable, and the remaining modes (neglected) are always stable. Material parameters used correspond to silicon. The two mode model Hamiltonian is the sum of a (diagonal) kinetic energy term and a potential energy term. The form of the potential energy function suggests an analogy with isomerisation reactions in chemistry. We therefore study the dynamics of the buckled beam using the conceptual framework established for the theory of isomerisation reactions. When the second mode is stable the potential energy surface has an index one saddle and when the second mode is unstable the potential energy surface has an index two saddle and two index one saddles. Symmetry of the system allows us to construct a phase space dividing surface between the two "isomers" (buckled states). The energy range is sufficiently wide that we can treat the effects of the index one and index two saddles in a unified fashion. We have computed reactive fluxes, mean gap times and reactant phase space volumes for three stress values at several different energies. In all cases the phase space volume swept out by isomerizing trajectories is considerably less than the reactant density of states, proving that the dynamics is highly nonergodic. The associated gap time distributions consist of one or more `pulses' of trajectories. Computation of the reactive flux correlation function shows no sign of a plateau region; rather, the flux exhibits oscillatory decay, indicating that, for the 2-mode model in the physical regime considered, a rate constant for isomerization does not exist.Comment: 42 pages, 6 figure

    Potential-energy surfaces, unimolecular processes and spectroscopy

    Get PDF
    The present symposium brings together research in a number of fields: the quantum-chemical calculation of molecular potential-energy surfaces, rotational–vibrational spectroscopy, methods of calculating rotational–vibrational energy levels, unimolecular reactions and intramolecular dynamics. Several aspects of the work are discussed including some recent developments on rates and products' quantum state distributions for unimolecular dissociations having highly flexible transition states. The usefulness of having improved potential-energy surfaces, particularly the bonding and hindered rotational potentials in the dissociations, is noted. In various other studies in this symposium a better knowledge of the surfaces would be particularly helpful. New results on a semiclassical quantization method are also described

    Effect of phase relaxation on quantum superpositions in complex collisions

    Full text link
    We study the effect of phase relaxation on coherent superpositions of rotating clockwise and anticlockwise wave packets in the regime of strongly overlapping resonances of the intermediate complex. Such highly excited deformed complexes may be created in binary collisions of heavy ions, molecules and atomic clusters. It is shown that phase relaxation leads to a reduction of the interference fringes, thus mimicking the effect of decoherence. This reduction is crucial for the determination of the phase--relaxation width from the data on the excitation function oscillations in heavy--ion collisions and bimolecular chemical reactions. The difference between the effects of phase relaxation and decoherence is discussed.Comment: Extended revised version; 9 pages and 3 colour ps figure
    • …
    corecore