23,825 research outputs found

    Deriving Good LDPC Convolutional Codes from LDPC Block Codes

    Full text link
    Low-density parity-check (LDPC) convolutional codes are capable of achieving excellent performance with low encoding and decoding complexity. In this paper we discuss several graph-cover-based methods for deriving families of time-invariant and time-varying LDPC convolutional codes from LDPC block codes and show how earlier proposed LDPC convolutional code constructions can be presented within this framework. Some of the constructed convolutional codes significantly outperform the underlying LDPC block codes. We investigate some possible reasons for this "convolutional gain," and we also discuss the --- mostly moderate --- decoder cost increase that is incurred by going from LDPC block to LDPC convolutional codes.Comment: Submitted to IEEE Transactions on Information Theory, April 2010; revised August 2010, revised November 2010 (essentially final version). (Besides many small changes, the first and second revised versions contain corrected entries in Tables I and II.

    Alternating-Direction Line-Relaxation Methods on Multicomputers

    Get PDF
    We study the multicom.puter performance of a three-dimensional Navier–Stokes solver based on alternating-direction line-relaxation methods. We compare several multicomputer implementations, each of which combines a particular line-relaxation method and a particular distributed block-tridiagonal solver. In our experiments, the problem size was determined by resolution requirements of the application. As a result, the granularity of the computations of our study is finer than is customary in the performance analysis of concurrent block-tridiagonal solvers. Our best results were obtained with a modified half-Gauss–Seidel line-relaxation method implemented by means of a new iterative block-tridiagonal solver that is developed here. Most computations were performed on the Intel Touchstone Delta, but we also used the Intel Paragon XP/S, the Parsytec SC-256, and the Fujitsu S-600 for comparison

    Parallel Factorizations in Numerical Analysis

    Full text link
    In this paper we review the parallel solution of sparse linear systems, usually deriving by the discretization of ODE-IVPs or ODE-BVPs. The approach is based on the concept of parallel factorization of a (block) tridiagonal matrix. This allows to obtain efficient parallel extensions of many known matrix factorizations, and to derive, as a by-product, a unifying approach to the parallel solution of ODEs.Comment: 15 pages, 5 figure

    Convolutional Dictionary Learning through Tensor Factorization

    Get PDF
    Tensor methods have emerged as a powerful paradigm for consistent learning of many latent variable models such as topic models, independent component analysis and dictionary learning. Model parameters are estimated via CP decomposition of the observed higher order input moments. However, in many domains, additional invariances such as shift invariances exist, enforced via models such as convolutional dictionary learning. In this paper, we develop novel tensor decomposition algorithms for parameter estimation of convolutional models. Our algorithm is based on the popular alternating least squares method, but with efficient projections onto the space of stacked circulant matrices. Our method is embarrassingly parallel and consists of simple operations such as fast Fourier transforms and matrix multiplications. Our algorithm converges to the dictionary much faster and more accurately compared to the alternating minimization over filters and activation maps

    Cyclic networks of quantum gates

    Get PDF
    In this article initial steps in an analysis of cyclic networks of quantum logic gates is given. Cyclic networks are those in which the qubit lines are loops. Here we have studied one and two qubit systems plus two qubit cyclic systems connected to another qubit on an acyclic line. The analysis includes the group classification of networks and studies of the dynamics of the qubits in the cyclic network and of the perturbation effects of an acyclic qubit acting on a cyclic network. This is followed by a discussion of quantum algorithms and quantum information processing with cyclic networks of quantum gates, and a novel implementation of a cyclic network quantum memory. Quantum sensors via cyclic networks are also discussed.Comment: 14 pages including 11 figures, References adde
    • …
    corecore