8 research outputs found

    Equivalence of local-and global-best approximations, a simple stable local commuting projector, and optimal hphp approximation estimates in HH(div)

    Get PDF
    International audienceGiven an arbitrary function in H(div), we show that the error attained by the global-best approximation by HH(div)-conforming piecewise polynomial Raviart-Thomas-Nédélec elements under additional constraints on the divergence and normal flux on the boundary, is, up to a generic constant, equivalent to the sum of independent local-best approximation errors over individual mesh elements, without constraints on the divergence or normal fluxes. The generic constant only depends on the shape-regularity of the underlying simplicial mesh, the space dimension, and the polynomial degree of the approximations. The analysis also gives rise to a stable, local, commuting projector in HH(div), delivering an approximation error that is equivalent to the local-best approximation. We next present a variant of the equivalence result, where robustness of the constant with respect to the polynomial degree is attained for unbalanced approximations. These two results together further enable us to derive rates of convergence of global-best approximations that are fully optimal in both the mesh size hh and the polynomial degree pp, for vector fields that only feature elementwise the minimal necessary Sobolev regularity. We finally show how to apply our findings to derive optimal a priori hphp-error estimates for mixed and least-squares finite element methods applied to a model diffusion problem

    Equivalence of local-and global-best approximations, a simple stable local commuting projector, and optimal hp approximation estimates in H(div)

    No full text
    Given an arbitrary function in H(div), we show that the error attained by the global-best approximation by H(div)-conforming piecewise polynomial Raviart-Thomas-Nédélec elements under additional constraints on the divergence and normal flux on the boundary, is, up to a generic constant, equivalent to the sum of independent local-best approximation errors over individual mesh elements, without constraints on the divergence or normal fluxes. The generic constant only depends on the shape-regularity of the underlying simplicial mesh, the space dimension, and the polynomial degree of the approximations. The analysis also gives rise to a stable, local, commuting projector in H(div), delivering an approximation error that is equivalent to the local-best approximation. We next present a variant of the equivalence result, where robustness of the constant with respect to the polynomial degree is attained for unbalanced approximations. These two results together further enable us to derive rates of convergence of global-best approximations that are fully optimal in both the mesh size h and the polynomial degree p, for vector fields that only feature elementwise the minimal necessary Sobolev regularity. We finally show how to apply our findings to derive optimal a priori hp-error estimates for mixed and least-squares finite element methods applied to a model diffusion problem

    Local Finite Element Approximation of Sobolev Differential Forms

    Full text link
    We address fundamental aspects in the approximation theory of vector-valued finite element methods, using finite element exterior calculus as a unifying framework. We generalize the Cl\'ement interpolant and the Scott-Zhang interpolant to finite element differential forms, and we derive a broken Bramble-Hilbert Lemma. Our interpolants require only minimal smoothness assumptions and respect partial boundary conditions. This permits us to state local error estimates in terms of the mesh size. Our theoretical results apply to curl-conforming and divergence-conforming finite element methods over simplicial triangulations.Comment: 22 pages. Comments welcom
    corecore