911 research outputs found

    Probabilistic Quantum Control Via Indirect Measurement

    Full text link
    The most basic scenario of quantum control involves the organized manipulation of pure dynamical states of the system by means of unitary transformations. Recently, Vilela Mendes and Mank'o have shown that the conditions for controllability on the state space become less restrictive if unitary control operations may be supplemented by projective measurement. The present work builds on this idea, introducing the additional element of indirect measurement to achieve a kind of remote control. The target system that is to be remotely controlled is first entangled with another identical system, called the control system. The control system is then subjected to unitary transformations plus projective measurement. As anticipated by Schrodinger, such control via entanglement is necessarily probabilistic in nature. On the other hand, under appropriate conditions the remote-control scenario offers the special advantages of robustness against decoherence and a greater repertoire of unitary transformations. Simulations carried out for a two-level system demonstrate that, with optimization of control parameters, a substantial gain in the population of reachable states can be realized.Comment: 9 pages, 2 figures; typos added, reference added, reference remove

    Quantum and classical resources for unitary design of open-system evolutions

    Get PDF
    A variety of tasks in quantum control, ranging from purification and cooling to quantum stabilisation and open-system simulation, rely on the ability to implement a target quantum channel over a specified time interval within prescribed accuracy. This can be achieved by engineering a suitable unitary dynamics of the system of interest along with its environment, which, depending on the available level of control, is fully or partly exploited as a coherent quantum controller. After formalising a controllability framework for completely positive trace-preserving quantum dynamics, we provide sufficient conditions on the environment state and dimension that allow for the realisation of relevant classes of quantum channels, including extreme channels, stochastic unitaries or simply any channel. The results hinge on generalisations of Stinespring's dilation via a subsystem principle. In the process, we show that a conjecture by Lloyd on the minimal dimension of the environment required for arbitrary open-system simulation, albeit formally disproved, can in fact be salvaged, provided that classical randomisation is included among the available resources. Existing measurement-based feedback protocols for universal simulation, dynamical decoupling and dissipative state preparation are recast within the proposed coherent framework as concrete applications, and the resources they employ discussed in the light of the general results

    Quantum resources for purification and cooling: fundamental limits and opportunities

    Get PDF
    Preparing a quantum system in a pure state is ultimately limited by the nature of the system's evolution in the presence of its environment and by the initial state of the environment itself. We show that, when the system and environment are initially uncorrelated and arbitrary joint unitary dynamics is allowed, the system may be purified up to a certain (possibly arbitrarily small) threshold if and only if its environment, either natural or engineered, contains a "virtual subsystem" which has the same dimension and is in a state with the desired purity. Beside providing a unified understanding of quantum purification dynamics in terms of a "generalized swap process," our results shed light on the significance of a no-go theorem for exact ground-state cooling, as well as on the quantum resources needed for achieving an intended purification task.Comment: 10 pages, 2 figure

    Coherent Quantum Filtering for Physically Realizable Linear Quantum Plants

    Full text link
    The paper is concerned with a problem of coherent (measurement-free) filtering for physically realizable (PR) linear quantum plants. The state variables of such systems satisfy canonical commutation relations and are governed by linear quantum stochastic differential equations, dynamically equivalent to those of an open quantum harmonic oscillator. The problem is to design another PR quantum system, connected unilaterally to the output of the plant and playing the role of a quantum filter, so as to minimize a mean square discrepancy between the dynamic variables of the plant and the output of the filter. This coherent quantum filtering (CQF) formulation is a simplified feedback-free version of the coherent quantum LQG control problem which remains open despite recent studies. The CQF problem is transformed into a constrained covariance control problem which is treated by using the Frechet differentiation of an appropriate Lagrange function with respect to the matrices of the filter.Comment: 14 pages, 1 figure, submitted to ECC 201
    • …
    corecore