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Abstract. A variety of tasks in quantum control, ranging from purification and

cooling, to quantum stabilization and open-system simulation, rely on the ability to

implement a target quantum channel over a specified time interval within prescribed

accuracy. This can be achieved by engineering a suitable unitary dynamics of the

system of interest along with its environment – which, depending on the available

level of control, is fully or partly exploited as a coherent quantum controller.

After formalizing a controllability framework for completely positive trace-preserving

quantum dynamics, we provide sufficient conditions on the environment state and

dimension that allow for the realization of relevant classes of quantum channels –

including extreme channels, stochastic unitaries, or simply any channel. The results

hinge on generalizations of Stinespring’s dilation via a subsystem principle. In the

process, we show that a conjecture by Lloyd on the minimal dimension of the

environment required for arbitrary open-system simulation, albeit formally disproved,

can in fact be salvaged – provided that classical randomization is included among

the available resources. Existing measurement-based feedback protocols for universal

simulation, dynamical decoupling, and dissipative state preparation are recast within

the proposed coherent framework as concrete applications, and the resources they

employ discussed in the light of the general results.

Keywords : Quantum control, quantum simulation, open quantum systems, channel

controllability, coherent quantum feedback

1. Introduction

Realistic physical systems are never perfectly isolated from their surrounding

environment – due to both unwanted couplings to uncontrolled degrees of freedom and

to designer interactions with measurement apparatuses or auxiliary controller systems.

In the statistical description of quantum systems, the resulting class of open-system

dynamics may be derived directly from the quantum mechanics postulates [1]. More

precisely, the state of the target system is associated to a trace-one, positive semidefinite

density operator and, under the assumption that no initial correlations are present

with the environment, its evolution over some specified time interval is described by a
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completely positive, trace-preserving (CPTP) linear map. Physically, the latter results

from averaging over the degrees of freedom of the environment after a unitary evolution,

driven by a joint Hamiltonian, has taken place. Beside their natural emergence in

quantum statistical mechanics, open-system theory and thermodynamics [2, 3, 4], CPTP

dynamics have gained a central role within quantum information science [5]. On the one

hand, CPTP maps are the natural non-commutative analogues of classical stochastic

maps; as such, they are being widely used to model quantum communication channels,

noise effects, quantum error-correcting procedures, erasure and reset operations. In

this context, they are typically called quantum channels, and we will use here the two

denominations interchangeably. On the other hand, CPTP evolutions play a pervasive

role also in quantum measurement theory and statistics – in particular, describing

generalized non-selective measurements, conditional expectations and quantum filters

[6, 7, 8], as well as feedback networks in quantum control theory [9, 10].

In this work, we focus on the issue of quantifying the resources needed to engineer,

exactly or within a finite accuracy, a desired CPTP map. Our interest in this problem

stems from two major motivations. On a fundamental level, it is a key theoretical issue

in the design of universal, digital open-system simulators [11, 12] – one of the premier

applications of quantum information science, and one in which rapid experimental

progress is being made [13, 14]. In addition, a variety of key tasks in quantum control

can be described as, or can be brought to bear on, the effective engineering of a target set

of CPTP maps: among these, we mention dynamical decoupling, quantum stabilization,

purification and cooling – as we also investigated in previous work [15, 16, 17, 18].

It has long been known, thanks to a representation theorem by Stinespring [19],

that any CPTP map can in principle be obtained via a unitary dilation. More concretely,

this entails pairing the target system S, say, of dimension dS, to an auxiliary system E,

with dimension at most d2S and prepared in a known pure state, and then implementing

a joint unitary evolution on S + E, whose net effect on S is to enact the target map.

However, while this provides a sufficient set of resources, characterizing what resources

may also be necessary is not straightforward. In particular, it is not a priori clear what

minimal dimension of E is needed to implement any target map through such a unitary

design, nor the extent to which access to a mixed initial state of E may hinder the task.

If one relaxes the problem to one of approximate engineering of a target map within a

prescribed tolerance, even sufficient conditions are lacking to the best of our knowledge.

In addressing these issues, we introduce a general system-theoretic scenario for

coherent control of open systems, and define a set of relevant CPTP controllability

notions, associated, respectively, to the ability of engineering: (i) the full convex set of

CPTP maps; or (ii) only the extreme ones; or (iii) all of those of fixed Kraus rank –

either exactly or within prescribed non-zero accuracy (Section 2). We then proceed to

derive a series of sufficient and/or necessary conditions for these controllability notions to

hold (Sections 3 & 4). These results are obtained by generalizing Stinespring dilations,

as well as previous results specifically regarding purification and cooling [20, 18]: in

particular, we provide a sufficient condition on (possibly mixed) environment states
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that ensure unitary engineering of any maps of limited Kraus rank within a prescribed

accuracy ε > 0. This condition amounts to the existence of a sufficiently, ε-pure state in

a virtual-subsystem decomposition of the environment, stemming from the “subsystem

principle” established for purifying quantum maps in Ref. [18]. Next, we show that

the same conditions are also necessary for unitary design of the set of extreme maps.

However, the existence of an approximately pure quantum subsystem turns out not to

be necessary in general for engineering specific target CPTP maps – as we explicitly

demonstrate for stochastic unitaries via a construction based on majorization (Section

4.1). While the controllability results we provide are not constructive, at least in terms

of making reference to specific control resources at hand, we propose a way to recast the

unitary engineering of a CPTP map as an optimal state steering problem by a direct

application of the channel-state Choi-Jamio lkowski duality [21].

It is worth recalling that in his work on universal quantum simulators [11], Lloyd

conjectured that exact open-system simulation could be realized even with the dimension

of the auxiliary system being reduced from d2S to dS, provided that the latter could

be prepared in an arbitrary (pure or mixed) quantum state. A number of explicit

counterexamples have subsequently disproved the validity of this conjecture [22, 23, 24].

Interestingly, we find that a version of the above conjecture does hold true, provided

that additional classical randomization resources, as well as non-deterministic channel

constructions, are allowed (Section 3.3). Specifically, we show that any target, non-

extreme map may be obtained as the average over a randomized set of extreme-map

dilations, so that any CPTP is reachable by using an auxiliary system that is, indeed,

just dS-dimensional. With respect to Lloyd’s original conjecture, we need only pure

state of the auxiliary system, but we allow for sampling from an arbitrary classical

distribution on a larger space – one whose cardinality may be up to d4S.

Our study bears similarities, as well as fundamental differences, with the analysis

of indirect controllability, in the language of [25]. A first difference is that the task

is therein limited to the engineering of unitary evolutions on the target system. In

addition, our necessary conditions for the engineering of extreme maps show that

it is impossible, for general non-unitary evolutions as we consider, to have CPTP

controllability independently of the state of E. Our work also complements existing

results on controllability of open-system Markovian dynamics, including continuous-

time semigroups [26, 27] and discrete-time dynamics [28, 29].

Thanks to the flexible framework we employ, our results may be applied and

specialized to a number or existing protocols for universal simulation of CPTP dynamics

or for synthesizing specific CPTP maps of interest. In the last part of the paper (Section

6), we specifically re-examine three such applications within our framework – namely,

using only coherent Hamiltonian evolutions and coherent quantum feedback. The first

application is a constructive approach for simulating arbitrary CPTP maps to arbitrary

accuracy, based on binary (“Yes-No”) measurements, proposed in Ref. [12]. While

its original formulation employs only a single auxiliary qubit, the control resources also

include the ability of resetting it to a known pure state. Here, we provide a fully coherent
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Figure 1. (Color online) Tripartite setting of interest: HS is the dS-dimensional target

system, HB the uncontrollable bath, and HA an engineered auxiliary system. We

assume both S and A to be finite-dimensional, whereas E may be infinite-dimensional.

implementation of the protocol, by examining what resources are needed in this case, as

well as the impact of having a mixed ancillary state. As a second illustrative application,

we recast in fully coherent picture the feedback decoupling protocol we proposed in Ref.

[30]: in this case, the task is to engineer a trivial evolution (an effective “NOOP gate”

on the target system) by averaging out the effect of an uncontrollable bath. Lastly,

we extend the splitting-subspace approach for stabilizing a quantum state in finite time

introduced in Ref. [31], by allowing for a larger auxiliary space and, again, fully coherent

resources – which guarantees the desired state or subspace stabilization to be achievable

by a single iteration of the protocol.

2. Preliminaries

2.1. Hamiltonian description of controlled open quantum systems

We consider an open-system framework that is flexible enough to include arbitrary

control protocols for quantum dynamical engineering and simulation using semi-classical

open-loop control and coherent feedback capabilities. We assume that the system of

interest, S, may be coupled to both an uncontrollable quantum bath, B, via a fixed

interaction Hamiltonian, as well as to an engineered auxiliary quantum system, A, via

a tunable interaction. The latter may also couple to B in general. We shall refer to the

pair A,B collectively as the environment, E (see also Fig. 1).

Let HS,HA,HB denote the Hilbert space of system, ancilla, and physical bath,

respectively, with dim(HS) ≡ dS, dim(HA) ≡ dA, and dim(HE) ≡ dE being defined

accordingly. The initial state on the joint state spaceHSE ≡ HS⊗HE = HS⊗(HA⊗HB)

at a reference time t = 0 is assumed to be factorized with respect to the tri-partition

ρSE = ρS ⊗ ρE = ρS ⊗ ρA ⊗ ρB. We take the controlled joint dynamics to be generated
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by a Hamiltonian of the form

H(t) ≡ H0 +Hc(t) = HS ⊗ IE + IS ⊗HE +HSE +Hc(t), (1)

where HS and HE ≡ HA ⊗ IB + IA ⊗HB +HAB account for the free Hamiltonians of S

and E alone, HSE ≡ HSA + HSB includes the fixed interaction terms, and the control

Hamiltonian acts trivially on the uncontrollable component B, that is,

Hc(t) ≡
∑

`

u`(t)H` ⊗ IB, (2)

with the (real) functions {u`(t)} being the control inputs and the control Hamiltonians

having the general form H` ≡ HS,` ⊗ IA + IS ⊗HA,` +HSA,`. Note that the case where

B represents a classical bath may be formally included by moving to the interaction

picture with respect to HB and replacing time-dependent bath operators with classical

random variables.

After a time T > 0, the dynamics generated by H(t) is described by the conjugate

action of a unitary operator USE(T ), belonging to the unitary group U(HSE). Since we

start from factorized initial conditions and a fixed environment state, the reduced state

of the system at time T is a linear function of the initial system state, that is, we may

write ρS(T ) ≡ ET,0(ρS), with

ET,0(ρS) = TrE[USE(T ) ρS ⊗ ρE U †SE(T )]. (3)

Thus, a target CPTP map T may be obtained via unitary design at time T , from

environment state ρE, if, by using suitable controls, we can enact a joint unitary USE(T )

such that ET,0 = T .
A well-known result by Kraus [1] states that a linear map E is CPTP if and only if

it admits an operator-sum representation (OSR), namely:

E(ρ) =
m∑

j=1

MjρM
†
j ,

m∑

j=1

M †
jMj = I, ∀ρ ∈ D(HS), (4)

in terms of the so-called Kraus operators {Mj}, and with D(HS) denoting the set of

density operators on HS. The above discrete-time dynamics may be seen as the Hilbert-

Schmidt dual of an (Heisenberg-picture) map E† which is CP and unital, namely, a CP

map that preserves the identity. It is straightforward to show that the map ET,0 in Eq.

(3) can be indeed represented as an operator sum, and hence it is CPTP [5].

While the OSR is not unique, the minimal number of Kraus operators m, which

is called the Kraus rank of E , is well defined, and always m < d2S [1, 5]. In order to

define the Kraus rank precisely, it is convenient to introduce a different representation of

CPTP maps, the so-called Choi-Jamio lkowski isomorphism between quantum channels

and states. Let HS′ be an isomorphic copy of the system’s state space HS. Choose

a reference basis {|φi〉}, {|φ′i〉} in each and consider the maximally entangled state

Φ ≡ (
∑

i |φi〉|φ′i〉)(
∑

i〈φi|〈φ′i|)/dS. Then, the Choi matrix [21] is defined by

CE ≡ (E ⊗ IS′)(Φ), (5)
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where I is the identity map. It is possible to show that if two CPTP maps have the

same Choi matrix, they are the same map, and the Kraus rank of E can be uniquely

defined as the rank of its associated Choi matrix ‡.
From the Kraus representation in Eq. (4), it is easy to see that CPTP maps form

a convex set: if E1 and E2 are CPTP, then clearly λE1 + (1−λ)E2 is CPTP for λ ∈ [0, 1].

In the work of Choi [21], a useful characterization of extreme points of the convex CPTP

set is provided as well: a map is extreme if and only if (any of) its Kraus representation

{Mk} is such that the operators:

{M †
kMj}mj,k=1 (6)

are linearly independent. This is property is invariant with respect to the allowed

changes of representation in the {Mk}. It follows immediately, by comparing dimensions,

that extreme points have at most Kraus rank m = dS.

Remark: We choose to work in terms of a controlled Hamiltonian setting for

the dynamics, as opposed to a reduced dynamics description which is typical, for

instance, in master equation approaches to continuous-time dynamics, for a number

of reasons. First, this allows us to pinpoint the role of the environmental degrees of

freedom on the attainable set of dynamics, while providing access to effectively non-

Markovian evolution – which is harder to describe in full generality at the level of

reduced dynamics. Most importantly, the Hamiltonian setting does not restrict us to

engineering of divisible CPTP maps only, which are a strict subset of all possible ones

[32]. This is at variance with the capabilities of control protocols that entail sequences of

“elementary” CPTP building blocks, arising either from exponentials of (generally) time-

dependent Lindblad generators (hence yielding infinitesimal divisible channels) or from

discrete-time dissipative quantum circuits (also accessing divisible but not necessarily

infinitesimal divisible channels) – see e.g. [33, 27, 34, 35, 36, 37, 38] for illustrative

contributions.

2.2. Reachability definitions and control assumptions

In the following, we will refer to the available control resources ({Hc(t)}, ρA), together

with the fixed Hamiltonians HS, HE, HSE and bath state ρB, as a control scenario. Part

of our results can be framed as controllability results, where one looks at the set of maps

that can be enacted, or reached, within a specified control scenario. Formally:

Definition 1 (CPTP reachability by unitary design) A CPTP map T on S is

reachable at time T by unitary design in the control scenario ({Hc(t)}, ρA; ρB) if we

can enact a unitary USE(T ) so that in Eq. (3) we have ET,0 = T . Likewise, T is

ε-approximate reachable at time T if we can enact a unitary USE(T ) so that

dTV(ET,0(ρ), T (ρ)) ≤ ε, ∀ρ ∈ D(HS). (7)

‡ If HS is countably infinite, then one can partially by-pass the difficulty arising from the normalization

1/dS by using an unnormalized version of Φ.
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Here, dTV(X, Y ) ≡ 1
2
Tr(|X−Y |) = 1

2
||X−Y ||1 is the quantum total-variation distance,

which is a natural measure of distinguishability between quantum states [5, 39, 40].

Equation 7 is equivalent to requesting that the distance between the maps is small in

the induced operator norm:

1

2
‖ET,0 − T ‖1→1 ≤ ε,

where ‖T ‖1→1 = minρ(‖T (ρ)‖1/‖ρ‖1). Exact reachability is recovered by letting ε = 0.

Definition 2 (CPTP controllability) (i) The control scenario ({Hc(t)}, ρA; ρB) is

completely CPTP-controllable if any CPTP map T on S is reachable at some time TT ,

and similarly for ε-reachability. (ii) ({Hc(t)}, ρA; ρB) is extreme CPTP-controllable

or, respectively, m-rank CPTP-controllable, if any CPTP map T that is extreme or,

respectively, of Kraus rank at most m, is reachable at some time TT .

In the following, a key assumption will be that the control scenario is sufficiently

powerful to allow for complete unitary controllability of the joint system SE; namely,

we shall assume that the set of joint unitary operators that may be obtained by varying

the control functions u`(t) and the corresponding control Hamiltonians HSA,` – that

is, of the form USE(T ) = T exp
[
−i
∫ T
0
H(t)dt

]
, where T exp denotes the time-ordered

exponential – is dense in the full unitary group U(HSE). While this may seem a very

strong assumption, it is natural in our context for a number of reasons:

• By standard results in geometric control on Lie groups, at least in the case where

HE is effectively finite-dimensional (due, for instance, to the presence of an upper

cutoff on energy), this is equivalent to require that the Lie algebra generated by the

uncontrolled Hamiltonian, −iH0, and the set of control Hamiltonians {−iH`⊗ IB}
in Eq. (2), is the full Lie algebra u(HSE) of U(HSE). It can be shown (see e.g.

[41, 9]) that almost every choice of just one pair of Hamiltonians on a single system

will guarantee unitary controllability, and one may argue that a similar argument

carries over to our composite-system setting as well. Hence, with generic choices

of the Hamiltonians, joint unitary controllability will be guaranteed.

• In a series of papers, D’Alesssandro and collaborators [42, 25, 43] studied the related

concept of indirect (unitary) controllability. The control scenario is equivalent to

ours, once the uncontrollable bath B is removed, and unitary controllability is

granted for the auxiliary system A: the task in this case is to determine under which

condition all unitaries (and not all CPTP maps, as in our case) may be obtained

by a joint evolution on HSA followed by a partial trace on A. In [25], the authors

show that, if the auxiliary system starts in the completely mixed state, ρA = I/dA,

joint unitary controllability is necessary for indirect unitary controllability on S. In

particular, joint unitary controllability is necessary if requires wants strong indirect

unitary controllability, namely, indirect unitary controllability for all initial states

ρA of the auxiliary system.
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3. A subsystem principle for unitary design of CPTP maps

3.1. The standard approach: Stinespring dilation using a pure ancilla

Consider an OSR of a CPTP map E as in Eq. (4), and assume that the system Hilbert

space HS is paired to an auxiliary one, HA, of dimension m. One can the define a map

V : HS → HA ⊗HS as

V ≡
m∑

k=1

|k〉 ⊗Mk. (8)

From the TP property, it follows that V †V = IS, thus V is an isometric embedding.

This is the dual of the Stinespring representation of a CP and unital E†, and it is easy

to see that it can be completed to a full unitary dilation UE of E on HA⊗HS. One way

of achieving this consists in picking a reference state, say, |1〉, on HA and identifying

the action of UE on the subspace spanned by |1〉 ⊗ |ψS〉 with the action of V on |ψS〉:

UE |1〉 ⊗ |ψS〉 =
( m∑

k=1

|k〉〈1| ⊗Mk

)
|1〉 ⊗ |ψS〉 = V |ψS〉.

Since, as already noted, V †V = IS, we only need to choose the rest of UE in such a way

that U †EUE = ISA. In the matrix block form induced by the tensor (Kroneker) product,

with respect to the basis {|k〉} of HA, this is equivalent to specify the first column of

blocks of UE as:

UE =




M1 ∗ . . . ∗
M2 ∗ . . . ∗
... ∗ . . . ∗

Mm ∗ . . . ∗


 , (9)

and then to complete the ∗ blocks by choosing a set of orthogonal columns for the full

matrix. That the first dS columns are orthogonal follows by:

V †V =
[
M †

1 M †
2 . . . M †

k

]



M1

M2

...

Mm


 = IS.

By construction, we have:

E(ρ) = TrA(UEρ⊗ |1〉〈1|U †E), ∀ρ ∈ D(HS). (10)

In particular, this construction proves that any CPTP map of rank m can be obtained

from an open-system evolution as in Eq. (3), provided that (i) the auxiliary system

dimension is greater or equal than its Kraus rank, dA ≥ m, and (ii) its initial state ρA
is pure (so-called unitary representation theorem [5]).
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3.2. CPTP controllability results from virtual subsystems

In the general setting we consider, where the environment E comprises both A and

an uncontrollable bath B in state ρB, and control over the auxiliary state ρA may be

limited, the question remains as to whether we can still engineer any desired CPTP map.

The key resource is the ability to access a sufficiently pure “portion” of the environment,

as captured by the general notion of a “virtual subsystem” [44, 45]. A virtual quantum

subsystem, say, M , of a larger system E (the environment in our case) is associated with

a tensor factor HM of a subspace of HE:

HE = (HM ⊗HF )⊕HR, (11)

for some factor HF and possibly a remainder space HR. The system E is said to be

initialized in a virtual subsystem M with state ρM if its state may be decomposed as

ρE = ρM ⊗ ρF ⊕ 0R, where 0R is the zero operator on HR and ρF an arbitrary state

on HF ; in particular, following [40, 18], two types of subsystem-initialization will play

a key role in the present context:

Definition 3 (Virtual-subsystem initialization) System E is initialized in a pure

state of M if ρE = |ϕ〉〈ϕ| ⊗ ρF ⊕ 0R, for some pure state |ϕ〉 ∈ HM . Similarly, E is

ε-approximately initialized in a pure state of M if there exists a pure-state initialization

of E, ρ̃E = |ϕ̃〉〈ϕ̃| ⊗ ρF ⊕ 0R, such that

dTV(ρE, ρ̃E) ≤ ε. (12)

The following is a central result of the paper, effectively deriving sufficient

conditions for the design of a map with a given Kraus rank from a “subsystem principle”:

Theorem 3.1 (m-rank CPTP controllability) Assume joint unitary controllability

and factorized initial conditions ρS⊗ρE. Then the target system S is ε-approximate m-

rank CPTP controllable if there exists a decomposition of HE as HE = (HM⊗HF )⊕HR,

with dim (HM) = m, such that ρE is ε-approximately initialized in a pure state of M.

Proof. We will show that, under the hypothesis, every T on S of Kraus rank m or less

is ε-reachable via a generalized Stinespring construction. If ρE satisfies the condition in

Eq. (12), then we may write

ρE ≡ ρ̃E + ∆ρE,
1

2
Tr(|∆ρE|) ≤ ε. (13)

If ε = 0, we can use the Stinespring construction described above and engineer T
perfectly, by defining a unitary UT ∈ U(HS⊗HM) as in Eq. (9), and then extending its

action to the whole HSE = (HS ⊗HM ⊗HF )⊕ (HS ⊗HR) as WSE ≡ (UT ⊗ IF )⊕ ISR.
Next, for ε > 0, we show that by applying the same unitary UT to ρS ⊗ ρE, even

when ρE is only ε-approximately initialized in a pure state, the resulting state is ε-close

to the target output for all initial states. In fact, we have:

E(ρS) = TrE(WSE ρS ⊗ ρEW †
SE)

= T (ρS) + TrE[WSE ρS ⊗∆ρEW
†
SE]

≡ T (ρS) + Ẽ(ρS ⊗∆ρE),
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where Ẽ is a TP CP map and hence a trace-norm contraction [5]. Then, from Eq. (13),

it follows that dTV(E(ρS), T (ρS)) ≤ ε, for all ρS ∈ D(HS). Hence the same WSE also

ensures ε-approximate engineering of T . 2

It is interesting to note that the standard Stinespring dilation of Eq. (10) is recovered

as a special case of the above controllability result in the exact setting, ε = 0, by letting

m = d2S, HF = C, and HR = ∅.
Remark: The existence of a subsystem of HE of dimension m that is ε-

approximately initialized in a pure state is equivalent to the existence of a subspace,

say, H1 ≤ HE, of dimension d1 ≤ dE/m, such that ρE restricted to H1 has trace equal

to at least (1 − ε). That the initialization implies the existence of such a subspace is

clear by considering H1 ≡ span{|ϕ〉} ⊗ HF , and the converse implication follows by

the same identification, completed by defining additional (m − 1) subspaces Hj ' H1,

j = 2, . . . , dS, and identifying them withHj ≡ span{|ϕj〉}⊗HF , where the |ϕj〉 complete

|ϕ〉 to an orthonormal basis for HM . All the examples examined in Ref. [18], in which

the above construction is carried out explicitly, also work in the present setting. In

particular, we know how to construct a ε-pure subsystem in thermal environments and

in n-qubit environments, under certain constraints on the entropy. However, it is also

clear that having a pure subsystem is, in general, not necessary for CPTP controllability,

as we will show explicitly in Sec. 4.

By combining the previous theorem with the characterization of exact purification

and cooling obtained in Ref. [18], we also have the following:

Proposition 3.1 (Extreme CPTP controllability) The target system is extreme

CPTP-controllable if and only if there exists a decomposition HE = (HM ⊗HF )⊕HR,

with dim (HM) = dS, and ρE initialized in a pure state of HM . Furthermore, the system

is ε-approximately extreme CPTP-controllable if there exists a decomposition of HE as

above, and ρE is ε-approximately initialized in a pure state of HM .

Proof. Since extreme maps must have a Kraus representation with operators satisfying

Eq. (6), their Kraus rank can be at most dS. Thus, the existence of a pure initialization

of a dS-dimensional subsystem is sufficient for their reachability given Theorem 3.1.

Necessity follows from the fact that any map that has a single pure state as output is

extreme, and the main theorem of [18] shows that the existence of a dS-dimensional

pure subsystem of E is a necessary condition to attain these maps.

The (sufficient) conditions for ε-approximate controllability, follows from a direct

application of the same contraction argument used in the proof of Theorem 3.1. 2

Remark 1: Notice that, while a dS-dimensional pure subsystem is required in order

to be able to engineer any extreme map, there are some maps for which this is clearly

not necessary. For example, unitaries are extreme maps, they have Kraus rank one

and, under the joint unitary controllability assumption, they do not need any auxiliary

resources to be enacted.
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Remark 2: The above result poses a clear no-go to the possibility of strong CPTP

controllability in the sense of [25], that is, under the requirement that the auxiliary

subsystem state be arbitrary: if dE < ∞, it is possible to find states of E that

do not admit a decomposition with a pure subsystem of dimension dS [18]. By the

above Proposition, this prevents reachability for some extreme maps, and hence CPTP-

controllability with an arbitrary environment state.

3.3. Probabilistic unitary design

Theorem 3.1 shows, by extending Stinespring’s construction, that CPTP controllability

is certainly guaranteed if there exists a d2S-dimensional subsystem of the environment

which is initialized in a pure state, and we have joint unitary controllability. However,

this is only a sufficient criterion, and CPTP controllability may still be possible with

less taxing resources, for instance, a smaller ancilla.

In this regard, Lloyd conjectured in Ref. [11] that an ancillary system of minimum

dimension dS would suffice to ensure complete CPTP-controllability, provided one could

initialize it in any state, pure or mixed. However, this conjecture has been proven wrong

in Ref. [22, 23, 24]: it is possible to find counterexamples, namely, CPTP maps that need

a larger (at least dS+1 dimensional) ancilla in order to be implemented via unitary design

as in Eq. (3). This also proves that the condition in Proposition 3.1 is not sufficient to

have complete CPTP controllability. While in fact the work by Lloyd & Viola in Ref.

[46] shows that an ancilla A as small as a single pure qubit does suffice provided it is

resettable (see also Sec. 6.1), from a subsystem-principle perspective this in any case

implies the existence of a pure qubit subsystem in the “physical” environments E needed

to purify A on each use. Alternatively, remaining within the coherent Hamiltonian

setting under consideration, we may relax the requirement that the target map T is

implemented deterministically in a “single shot”: as we now show, by allowing for some

classical resources and a non-deterministic construction, (exact) CPTP controllability

is indeed regained, if we have access to a pure, dS-dimensional ancilla subsystem, as

Lloyd originally conjectured.

In order to formalize the idea, we extend the unitary design method to include

classical stochastic resources, which can be used to implement mixtures of evolutions,

and hence simulate, on average, CPTP maps that are not extreme §.

Definition 4 (CPTP reachability on average) Given a probability distribution

π ≡ {πj}, a CPTP map T is reachable on average at time T if there exists joint

unitaries USE,j(T ) and each can be enacted with probability πj so that

T (ρS) = Eπ{TrE[USE,j(T ) ρS ⊗ ρE U †SE,j(T )]}.

§ We note that the idea of “average realization” of CPTP dynamics has been used previously, e.g.

in Ref. [29, 47]. However, the first work addresses only state controllability via measurement-based

feedback; in the second paper, which is tailored to the specific context of optical qudit channels, the

implementation is non-deterministic in the sense that only a finite probability of success is achieved in

general.
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We say that the target system is CPTP-controllable on average if every CPTP map is

reachable on average as above.

We can then establish the following:

Theorem 3.2 (Probabilistic reachability on average) Let T be an arbitrary

CPTP map on a dS-dimensional system, and assume that we can sample from any

classical distribution π ≡ {πj} on d4S elements. T is reachable on average at time T

if there exists a decomposition HE = (HM ⊗ HF ) ⊕ HR, with dim (HM) = dS and ρE
initialized in a pure state of HM . The system is then CPTP-controllable on average.

Proof. Proposition 3.1 guarantees that we can implement exactly, without the need

of classical randomization, all extreme maps. Any other map T can be written as

T =
∑

j πjTj, where Tj is extreme. Any T can be parametrized (for example, by using

Choi’s matrix) as a convex set immersed in a d2S × d2S-dimensional space of complex

positive-semidefinite matrices, and these in turn can be re-parametrized as a d4S − 1

real vector. By Carathéodory’s theorem on the convex hull [48], there are at most d4S
components in the sum, and the result follows. 2

Remark 1: While we have distinguished this way to simulate the output of a target

CPTP map from the one described in Eq. (3) as probabilistic, the actual difference is

subtle: distinguishing the outputs would be possible via measurement statistics only

if we had multiple identical copies that use the same classical stochastic resource.

Furthermore, it is instructive to think about maps that can output pure states: it is

immediate to see that, for these maps, every map in an equivalent convex combination

should also output that same pure state to the corresponding input, otherwise the

convex combination would not. This indicates that in the probabilistic channel-design

approach, the classical resources are used only to simulate the classical uncertainty in

the description of the target map, encoded in the associated convex weights.

Remark 2: ε-approximate average CPTP-map engineering can be also guaranteed,

in the same spirit of unitary engineering, by requesting a ε-pure state in the virtual

subsystem. In this way, each extreme map entering the decomposition of T can be

obtained within ε-precision, and the average error will be upper-bounded by
∑

j πjε = ε.

4. Unitary design of CPTP maps beyond the subsystem principle

4.1. A majorization approach for stochastic unitary maps

In the previous sections, we have focused on deriving a subsystem principle for CPTP

controllability maps using a Stinespring-type construction: access to a virtual subsystem

of the environment initialized in a (ε-)pure state suffices for all possible target maps to

be reached. However, if the task of interest is to engineering a specific map T or a set

of maps that does not include extreme ones, this need not be necessary.

The key assumption is that the spectrum of the environment state ρE majorizes the

set of convex weights needed to write T as a convex combination of other extreme maps.
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Recall that a probability distribution {pj} is said to majorize another distribution on

the same set {qj} if

k∑

j=1

pj ≥
k∑

j=1

qj, ∀k ≥ 1.

In this case we write {pj} � {qj}. It is a well-known result [49] that {pj} � {qj} if and

only if there exists a unitary V , such that qi =
∑

j |Vij|2pj or, compactly in matrix form,

by defining Pij ≡ |Vij|2, we may write ~p = P~q. Any matrix P that can be obtained

as the element-wise modulus square of a unitary V is called a unistochastic (or ortho-

stochastic) matrix. A well studied class of (unital) CPTP maps that are non-extreme

comprises stochastic unitaries,

T (ρ) =
m∑

j=1

qjUjρU
†
j ,

m∑

j=1

qj = 1, qj 6= 0,

where Uj ∈ U(HS). We first show how it is possible to reach this class of maps using

majorization, without constraining the purity of a virtual-subsystem initialization:

Theorem 4.1 (Reachability of stochastic unitaries) Assume joint unitary con-

trollability controllability and factorized initial conditions ρS ⊗ ρE on HS ⊗HE. Let T
be stochastic unitary, with weights {qj}. Then, for every ε ≥ 0, T is ε-approximate

reachable if there exists a decomposition of HE as HE = (HM ⊗ HF ) ⊕ HR, with

dim (HM) = m, and an initialization of E in M , ρ̃E = ρM ⊗ ρF ⊕ 0R, such that:

(i) ρM =
∑m

j=1 pj|j〉〈j|, with {pj} � {qj};
(ii) dTV(ρE, ρ̃E) ≤ ε.

Proof. With respect to the decomposition HE = (HM⊗HF )⊕HR, define a joint unitary

of the form

WSE ≡ CU(IS ⊗ VE),

where

CU =
∑

j

(Uj ⊗ |j〉〈j|)⊗ IF ⊕ (IS ⊗ IR) , (14)

implements Uj conditionally on the state of M , and VE = V ⊗ IF ⊕ IR is a unitary, with

V such that qi =
∑

j |Vij|2pj. Note that such a V exists given hypothesis (i). Then in

the case ε = 0, by noticing that diag(V ρMV
†) = (q1, . . . , qm), the above WSE is such in

Eq. (3) ET,0 = T by construction. The fact that WSE also works when ε 6= 0 follows

from the same contraction argument used in proving Theorem 3.1. 2
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4.2. Sufficient conditions for unitary design of general convex-combination maps

A similar majorization-based approach can be used to derive sufficient conditions for

the unitary design of more general convex combination of CPTP maps. For the sake of

simplicity, we exemplify the construction for the binary case:

T = q1T1 + q2T2, q1 + q2 = 1.

Since the maps Tj are extreme, by Proposition 3.1 they may be obtained as in Eq. (3)

if and only if the dimension of the corresponding ancilla m = dS. Let UTj denote the

unitaries that implement Tj on HS ⊗HM,j, as in the proof of Theorem 3.1.

Assume that there exist subspaces of HE, say, H1 ≡ HM1 ⊗ HF,1 and H2 ≡
HM2 ⊗HF,2, with dim(HMj

) = dS, such that ρE restricted to each of them has the form

ρE|Hj
= |j〉〈j| ⊗ τ̃j, where Tr(τ̃j) = qj, respectively. Then we can build a decomposition

of the environment Hilbert space as:

HE = H1 ⊕H2 ⊕HR

= (HM,1 ⊗HF,1)⊕ (HM,2 ⊗HF,2)⊕HR,

and, including HS, we have, accordingly:

HS ⊗ [(HM,1 ⊗HF,1)⊕ (HM,2 ⊗HF,2)⊕HR] =

(HS ⊗HM,1 ⊗HF,1)⊕ (HS ⊗HM,2 ⊗HF,2)⊕ (HS ⊗HR).

In analogy to Eq. (14), and relative to the three orthogonal subspaces in the above

decomposition, let:

C
(2)
SE ≡ (UT1 ⊗ IF,1)⊕ (UT2 ⊗ IF,2)⊕ (IS ⊗ IR).

It can be verified by direct computation that if, as we assumed, ρE allocates probability

q on the subspace HM1⊗HF1 , and (1− q) on HM2⊗HF2 , then C
(2)
SE will implement T as

in Eq. (3). This construction can be directly extended to an arbitrary number K > 2

of extreme maps, by identifying more subspaces Hi of dimension multiple of dS, that

account for the correct amount of probability, and by letting

C
(K)
SE ≡

K⊕

k=1

(UTk ⊗ IF,k)⊕ (IS ⊗ IR).

The existence of the required Hj subspaces can be checked via the following

algorithm, which constructs, if possible, a choice of subspaces associated with a

probability distribution that majorizes the qk:

(I) Diagonalize ρE and order the basis so that the eigenvalues λ`(ρE) are non-increasing

in `. Order the convex weight set qk accordingly.

(II) Define f to be the smallest number so that the first f eigenvalues of ρE are larger

than the sum of the first f elements q`. Check if the following holds for every k:
kf∑

`=1

λ`(ρE) ≥
k∑

`=1

q`. (15)

If this is not the case, this method is not viable for engineering the target convex

combination.
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(III) Assuming that Eq. (15) holds, note that the remaining “degrees of freedom” in HE

must be at least (dS − 1)Kf and, by construction, they all belong to the kernel of

ρE. If this is the case, we can identify:

span{|1`〉} ⊗ HF,` ≡ span{|λ`(ρE)〉, ` = 1, . . . , f},
and complete each subspace to HM,` ⊗HF,` by adding elements of the kernel. By

construction, all HF,` ' HF are isomorphic and of dimension f. With respect to

this decomposition, the state of the environment takes the form:

ρE =
⊕

`

q̃`|1`〉〈1`| ⊗ τ̃`,

where τ̃` are density operators on HF,` and {q̃`} a probability distribution that

majorizes {q`}.
(IV) Let V be a unitary such that qj =

∑
` |Vj`|2q̃`. The desired non-extreme map

T =
∑K

j qjTj can then be engineered by a block-unitary C
K)
SE as above, after the

action of V ⊗ IF on (
⊕

` span{|1`〉})⊗HF,`.

Remark: For a general non-extreme map, that obeys Eq. (15) but may involve up

to d4S extreme maps in its convex-sum decomposition, the construction we presented

requires access to an environment whose dimension is of the order of d5S. While this is

clearly much more demanding in terms of unitary control than the standard Stinespring

construction, it can be justifiable in limiting cases, in particular in situations where no

access to a (nearly) pure auxiliary state ρA is granted.

5. Toward optimal CPTP design via channel-state duality

The previous controllability results rely on the ability of enacting certain unitary

evolutions on the joint space of the system of interest and its environment, guaranteed

by joint unitary controllability. Checking if this assumption holds for a given control

scenario is relatively straightforward, and computationally tractable – upon constructing

the control Lie algebra generated by the available Hamiltonians and comparing it to the

full one. However, how to explicitly synthesize a control that achieves the intended

evolution is, in general (and already at the closed-system, unitary level), a much harder

problem. In this section, we propose a way to recast the CPTP control synthesis problem

based on unitary design as an optimization problem. The target map is going to be

reached exactly whenever the cost to minimize reaches zero. While the problem is

guaranteed to have a solution with zero cost if the joint system is unitary controllable,

this reformulation can also be useful to investigate whether exact reachability is possible

without full joint controllability, or to probe the actual accuracy of the control synthesis

for approximate engineering in the presence of mixed virtual subsystem states.

Instead of writing the problem directly for the target CPTP map, the idea is to

formulate an equivalent state-to-state transfer problem, albeit on a larger state space,

via the Choi-Jamio lkowski representation. One advantage in doing this is that, in
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Figure 2. (Color online) Remapping the unitary design of a target CPTP map T
(circuit on the top part of the image) to unitary transfer of a single state (circuit on

the bottom) via the Choi-Jamio lkowski isomorphism.

principle, a wide array of algorithms are available for optimal state-transfer control

problem [41, 50]. Care is needed, nonetheless, since the resulting problem is an atypical

one, from the standpoint of standard optimal control algorithms: while most of the

optimal state transfer literature considers a “full” state transfer, in our setting the

desired output is specified only on a subsystem.

Formally, as we mentioned in Sec. 2.1, in order to exploit state-channel duality we

couple the joint system and environment Hilbert space to an isomorphic copy of HS,

which we call HS′ . On HS′ ⊗HS ⊗HE, we consider the initial state Φ⊗ ρE, where Φ is

the maximally entangles state, as in Eq. (5). Next, we let a joint unitary USE act on

HS ⊗HE, while the trivial (identity) evolution is enacted on HS′ , and we take a partial

trace over HE. Let us denote by Φ′ the resulting density operator on HS′ ⊗HS.

As a consequence of the Choi-Jamio lkowski isomorphism, namely, the one-to-one

correspondence between CPTP maps and Choi matrices, it follows that USE(T ) enacts

a target map T = ET,0 as in Eq. (3) if and only if Φ′ = (IS′ ⊗ T )(Φ) (see also Fig. 2

for a pictorial rendering). We can then use this equivalence to recast the “dissipative

gate synthesis” problem associated to T into an optimal state transfer problem from

Φ 7→ Φ′. Let H0, H` ≡ HSA,` be the free and control Hamiltonians as introduced in Sec.

2.1, and let {σi} be a basis for the operator space B(HS′S). Define the components:

ci ≡ Tr[σi (IS′ ⊗ T )(Φ)].

We can then look for the best choice of unitary USE that implements T at time T by

posing an optimization problem of the following type:

minimize USE

∑

i

∣∣∣ci − Tr[σi ⊗ IE[(IS′ ⊗ USE)Φ⊗ ρE(IS′ ⊗ U †SE)]
∣∣∣
2

,

subject to USE(T ) = T exp
{
− i
∫ T

0

[
H0 +

∑

`

u`(t)H`

]
dt
}
.

In fact, once H0 and {H`} are specified, the actual optimization variables are the control
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inputs u`(t) in Eq. (2): in the above form, the problem is written as if the USE was the

variable for the sake of compactness. Note that here the cost function is the quadratic

distance between the components of the desired state on SS ′ and the one corresponding

to the chosen controls, but other choices may be better suited to the scope [51]. The

problem is guaranteed to have a solution for which the cost function is zero if the system

of interest is CPTP controllable. Developing an explicit algorithm, or a variation of

an existing one, to solve the above type of optimal-control problems is an interesting

direction for future investigation.

6. Illustrative applications

In this section, we revisit some simple existing protocols for engineering a target CPTP

dynamics within the present framework of unitary design problems. We highlight their

use of limited resources, both in terms of the dimension of the environment and in

the types of available joint dynamics. Since we work within a coherent Hamiltonian-

control setting, we stress that having access to a suitable set of conditional operations,

along with other (protocol-dependent) control resources, will be instrumental in order

to replace classical (measurement-based) feedback protocols with protocols employing

only coherent feedback.

6.1. Coherent implementation of binary-tree protocols for channel construction

The first method for universal approximate engineering of arbitrary CPTP maps was

proposed in Ref. [12]. In terms of auxiliary quantum resources, it only needs the

smallest possible quantum environment: a single qubit, albeit the latter must be

resettable in a known pure state. While in practice the resulting map is obtained with

accuracy ε > 0, due to the presence of a Hamiltonian coherent averaging procedure

[15], the accuracy is only limited by how fast the averaging cycle can be enacted.

The original proposal relies crucially on discrete-time, measurement-based single-bit

feedback, with an explicit “binary-tree” construction being provided to implement the

required generalized quantum measurement. This construction has been subsequently

improved both in terms of making contact with specific universal gate sets and in terms

of efficiency [52, 53]. Here, we show how to achieve the same task by using only coherent

evolutions, at the cost of substituting the single resettable auxiliary qubit with multiple

copies of the same, if higher-rank maps are considered. In the light of Proposition

3.1, we know that having access to a sufficiently large (albeit not necessarily pure)

auxiliary subsystem is unavoidable if we aim to unitarily engineer a set of evolutions

which contains all the extreme ones.

6.1.1. Rank-two channels with pure ancilla. Having a pure ancilla of rank 2 guarantees

exact CPTP controllability of the system via a Stinespring-type dilation, yet does not

provide a constructive procedure to synthesize an effective joint unitary evolution in
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terms of the available resources. The protocol we describe, on the other hand, provides

a sequence of unitary evolutions that approximates an effective USE(T ), which we know

exists, by using only a specific class of controlled operations. The relevant resources and

task may be summarized as follows:

Task To approximately enact an arbitrary CPTP map T of Kraus rank 2 on a dS-

dimensional target system S.

Environment A two-level system, with state space HE ≡ span{|0〉, |1〉}, initially in a

pure state, say, ρE = |0〉〈0|. No interaction with an uncontrollable bath is assumed

to be present.

Control resources We need an entangling Hamiltonian of the form HSE ≡ γΠS⊗XE,

where γ > 0 is a tunable parameter and ΠS = |φ〉〈φ| is a projector onto a pure

state of S, while XE ≡ |0〉〈1|+ |1〉〈0|. In addition, complete (ideally, instantaneous)

Hamiltonian control is required on S in order to implement Hamiltonian averaging,

as well as arbitrary conditional unitaries of the form:

U0 ⊗ |0〉〈0|+ U1 ⊗ |1〉〈1|,
where U0,1 are arbitrary unitaries on S ‖.

Given the above resources, the construction is based on two simple mathematical

observations: (i) every CPTP map with Kraus rank 2 is associated to Kraus operators

M0,M1 that admit a polar decomposition [49] of the form

M0 = U0 cos(tγP ), M1 = U1 sin(tγP ), (16)

where P is a positive-semidefinite operator on S. This follows from the fact that if

M0,M1 correspond to a CPTP map, they satisfy M †
0M0 + M †

1M1 = I, which implies

that their respective polar components must be lesser or equal than the identity,

simultaneously diagonalizable and their square sum to the identity. (ii) Owing to the

spectral theorem, every positive-semidefinite P can be written as P =
∑

k λkVkΠSV
†
k ,

with λk convex weights,
∑

k λk = 1. Based on these observations, we now show that

it is possible to approximate (to arbitrary accuracy, in principle) any rank-two CPTP

evolution by the following sequence of coherent dynamics (see also Fig. 3):

(I) Assume that T has a OSR in terms of a pair of Kraus operators with a polar

decomposition as in Eq. (16). Let S and E be coupled by HSE as above, and

evolve for a time interval t, while applying an Hamiltonian averaging technique

[15, 54] aimed to simulate γP ⊗ XE, with P an arbitrary positive semidefinite

operator, as the new effective Hamiltonian. In view of the above observations, this

is possible by dividing a finite evolution interval t in N cycles of duration ∆t, and

each ∆t in sub-intervals of length λk∆t, that is, t ≡ N∆t, and ∆t ≡∑k λk∆t. At

the beginning of the first sub-interval we apply a unitary V1 on S, at the second

‖ In the original protocol [12], these conditional unitaries are substituted by measurement-based

feedback and unitary control on S alone, conditional on the output of the feedback.
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Figure 3. (Color online) Coherent implementation of the Lloyd-Viola protocol [12]

for approximate design of CPTP maps in the special case of a rank-two target map.

V2V
†
1 , at the third V3V

†
2 , and so on. If N is sufficiently large (formally, N → ∞),

the effective Hamiltonian over each cycle is simply the time average, namely,

H
(0)

=
1

∆t

∑

k

λk∆t(γV
†
k ΠSVk)⊗XE = γP ⊗XE,

with the leading-order correction ||H(1)|| = O[(∆t ||γΠS ⊗ XE||)2]. Over the time

duration t, this results in the joint evolution:

ŨSE(t) ≈ e−iH
(0)
t = cos(γtP )⊗ IE + i sin(γtP )⊗XE. (17)

(II) In order to obtain the Kraus operators in the decomposition (16), we next to

apply a conditional unitary Ucond ≡ U0 ⊗ |0〉〈0| + U1 ⊗ |1〉〈1|. Once E is traced

out, the net dynamics on S is a CPTP map with operators M0 ≈ U0 cos(tγP ),

M1 ≈ U1 sin(tγP ), as desired.

6.1.2. Beyond rank-two channels. In order to implement CPTP maps of higher rank by

using the specified coherent-control resources, we needs more copies of the pure auxiliary

qubit – or, as in the original scheme, the ability to dissipatively reset it to the initial

pure state, which however is not viable in the present setting.

The basic idea is the following: In order to obtain a map Kraus rank three,

associated to Kraus operators M0,M1,M2, we first use the procedure described above

to implement M0 and an intermediate operator M̃1 ≡
√
M †

1M1 +M †
2M2. Then,

conditionally on the state |1〉 of the first ancilla qubit, we performs another unitary

design, associated to a CPTP map of Kraus rank 2, but now with Kraus operators

M ′
0 ≡M1M̃

−1
1 , M ′

1 ≡M2M̃
−1
1 . This is still a TP map, since we have:

M ′†
0 M

′
0 +M ′†

1 M
′
1 = M̃−1

1 M †
1M1M̃

−1
1 + M̃−1

1 M †
2M2M̃

−1
1

= M̃−1
1 (M †

1M1 +M †
2M2)M̃

−1
1 = I.

By tracing out E, this leaves a CPTP map on the system, that approximates the target

map of rank 3. Such a “nested” construction can be iterated to a general rank m in

principle. In this case, the number of auxiliary qubits that are needed is m−1. In terms

of the dimension of the auxiliary quantum resources that are employed, and depending
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on the system dimension dS, this procedure is generally inefficient with respect to the

minimal Stinespring construction, and more so with respect to the probabilistic design

of Sec. 3.3; yet, it has the advantage of providing a systematic approach to construct

the needed Kraus operators by following the algorithm.

6.1.3. Noisy ancilla. It is worth investigating, at least in the simplest, rank-two case,

what are the implications of relaxing the assumption that the auxiliary environment is

purely initialized. Let us assume that the initial state for E is mixed, i.e., has the general

form ρE = w0|0〉〈0| + w1|1〉〈1| + q|0〉〈1| + q∗|1〉〈0|. By following the same evolution of

Eq. (17) as in the pure-state case, the joint system-environment state after time t is:

ρSE(t) = ŨSE(t)ρS ⊗ ρEŨ †SE(t)

= cos(γtP )ρS cos(γtP )⊗ (w0|0〉〈0|+ w1|1〉〈1|)
+ sin(γtP )ρS sin(γtP )⊗ (w1|0〉〈0|+ w0|1〉〈1|)
+ [off-diagonal terms in ρE].

Thus, the reduced states, conditional on E being in |0〉 or |1〉, respectively, become :

ρS||0〉 = w0 cos(γtP )ρS cos(γtP ) + w1 sin(γtP )ρS sin(γtP ),

ρS||1〉 = w0 sin(γtP )ρS sin(γtP ) + w1 cos(γtP )ρS cos(γtP ).

Since these are non-trivial convex combination of single-operator CP maps, in contrast

with the pure case (which is recovered by posing w0 = 1, w1 = 0), we cannot exploit

the polar decomposition in (16) and obtain the desired reduced dynamics by applying a

conditional unitary ¶. If we do apply the same conditional operation of the pure-ancilla

case, the same contraction argument of the previous sections holds, and the error in the

final implementation can be bounded in the ‖ · ‖1→1 norm, depending on w1. Therefore,

with a non-pure ancilla, arbitrary accuracy can no longer be achieved even in the limit

of arbitrarily fast control and perfect averaging.

6.2. Coherent implementation of feedback-decoupling for quantum memory

In principle, the joint unitary controllability assumption implies that we can obtain

any unitary dynamics on the system – in particular, the trivial one, corresponding to

engineering a quantum memory, or “NOOP” gate. In practice, however, it may be hard

to find explicit controls that enact it while complying with practical constraints, and

that can ensure robust performance with respect to partial knowledge and uncertainty

about the coupling with the bath and its internal dynamics.

While open-loop dynamical decoupling techniques offer a method of choice in many

quantum information settings of interest [15, 55], in Ref. [30] we presented a way to

¶ Interestingly, the above issue does not occur for a rank-2 CPTP map whose Kraus operators are

Hermitian and positive-semidefinite (hence, associated to a unital map), as no unitary is needed in the

polar decomposition. However, the method we outlined would still incur in problems for higher-rank

Hermitian-Kraus maps, since a unitary evolution conditional on the auxiliary state is needed then.
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remove the effect of unwanted environmental interactions and effectively decouple S

from B by combining coherent-control capabilities with measurement-based single-bit

feedback. Despite being less flexible in regard to the types of system-bath interactions

that are able to be suppressed, feedback-enacted decoupling may offer important

advantages on time-scale requirements and compensate for uncorrelated noise, unlike

open-loop schemes. Recently, the method has been successfully demonstrated by using

a fully coherent implementation to achieve a NOOP gate on a nitrogen-vacancy qubit

device in the presence of dephasing noise [56]. Here, we recast the original single-bit

feedback strategy in the unitary design framework, focusing on the exact correction of an

unwanted evolution USB at a target (finite) time T . A related strategy for approximate

(first-order, short-time) suppression of the corresponding Hamiltonian generator HSB is

proposed in the original work, and can also be adapted to the present framework along

similar lines. The protocol may be described as follows:

Task Enact a NOOP gate on the target system S at time T, by removing the net effect

of its interaction with the uncontrollable bath B, so that an arbitrary initial state

ρS ≡ |ψ〉〈ψ| is preserved.

Environment The environment comprises both an auxiliary two-level system, with

state space HA = span{|0〉, |1〉}, initially in a pure state ρA = |φ〉〈φ|, where

|φ〉 ≡ (|0〉+ |1〉)/
√

2, and an uncontrollable bath in an arbitrary initial state ρB.

Free dynamics H0 = HS ⊗ IB + IS ⊗HB +HSB, where HS and HB are arbitrary, and

the unwanted coupling Hamiltonian HSB ≡ S0 ⊗ B0. In order for the method to

work, we need S0 to have a certain eigenvalue structure, that makes it resemble a

generalized Pauli matrix – the precise form is given in the protocol below.

Control resources We need fast (ideally, instantaneous) conditional unitary transfor-

mations of the form:

U0 ⊗ |0〉〈0|+ U1 ⊗ |1〉〈1|,
where U0,1 are arbitrary unitaries on the system, and an identity action is

understood on the bath +.

The basic steps of the protocol are (see also Figure 4):

(I) Rapidly entangle S and A, by performing a conditional gate of the form UC ≡
|0〉〈0| ⊗ IS + |1〉〈1| ⊗ US.

(II) Let the system evolve freely in the presence of B, up to time T , under the joint

unitary propagator USB(T ) = exp(−iH0T ).

(III) Apply a second fast conditional unitary, the inverse of the one in step (I), that is:

U †C = |0〉〈0| ⊗ IS + |1〉〈1| ⊗ U †S.
(IV) Apply a Hadamard transformation UH

A [5] to the ancilla qubit A.

+ In the original proposal [30], some of these conditional unitaries are substituted by von Neumann

measurement and feedback, implementing unitary evolutions on S alone, conditionally on the output

of the measurement.
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Figure 4. (Color online) Coherent feedback averaging protocol.

The resulting joint state on the whole system at this stage may be written as:

ρSE(T ) = |0〉A〈0| ⊗
(
A

(+)
SB (T )ρSB(0)A

(+)†
SB (T )

)

+ |1〉A〈1| ⊗
(
A

(−)
SB (T )ρSB(0)A

(−)†
SB (T )

)
,

where ρSB(0) = |ψ〉〈ψ| ⊗ ρB and

A
(±)
SB (T ) =

1

2

(
USB ± (U †S ⊗ IE)USB(US ⊗ IE)

)
, (18)

The form of A
(+)
SB (T ) shows that the evolution conditional to |0〉 on A already enacts, at

time T , an exact average of the unitary propagators USB and (U †S ⊗ IE)USB(US ⊗ IE).

To our aim, such an average should return an operator of the form IS ⊗B1, with B1 an

arbitrary operator on the bath, thus yielding a trivial evolution on the target system, as

desired. In Ref. [30], we show that US can achieve this task if and only if USB satisfies

the following property: when it is written as a block-matrix, accordingly to the tensor

structure of HB ⊗HS (notice the swap of the two factors, for convenience in analyzing

its block structure), its dS × dS blocks USB(i, j) are of the form:

USB(i, j) = ai,jIS + bi,jX, (19)

where X is a normal matrix whose eigenvalue xk, in decreasing order, must further

satisfy a mixing condition, namely, for all k, xk = −xdS−k.
The last required step in the protocol aims to transform A

(−)
SB (T ) into an operator of

the form IS⊗B2 as well, ensuring trivial dynamics on the system of interest irrespective

of the auxiliary system. If USB has the block-form (19), then it is easy to see that the

corresponding blocks for A
(−)
SB are of the form A

(−)
SB (i, j) = ci,jX. Different blocks can

be made proportional to one another, via unitary conditional operations, if and only if

X is itself proportional to a unitary, say, U †fb. Then the following conditional operation

will correct the “wrong” averaging implemented by A
(−)
SB (T ):

(V) Apply a third conditional unitary UC−fb ≡ |0〉〈0| ⊗ IS + |1〉〈1| ⊗ Ufb.

By explicitly writing USB(T ) = exp[−i(HS⊗IB+IS⊗HB+S0⊗B0)T ], it is easy to

see that blocks USB(i, j) in Eq. (19) will be linear combinations of IS and powers of S0.

If S2
0 = I, and S0 satisfies the mixing condition stated above, then feedback decoupling

is possible. More explicitly, S0 can be corrected if, up to a change of basis in S and a
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reshuffling of its eigenvalues, we have S0 = σz ⊗ IdS/2. Physically, this means that the

noise induced by the unwanted system-bath coupling is purely dephasing, and further

subject to the above symmetry constraint. When the target system is a qubit, dS = 2, as

for instance in the experimental implementation of [56], this constraint is automatically

satisfied in the pure dephasing regime.

6.3. Coherent implementation of splitting-subspace approach for quantum stabilization

The preparation of a target quantum state in a system of interest, in a way that is

independent with respect to its initial state, is a key task in quantum control, motivated

by applications ranging from quantum information processing to quantum purification

and cooling, see e.g. [57, 58, 59, 60, 18] and references therein. If the target state is also

required to be invariant (a fixed point) for the underlying dynamics, then from a system-

theory standpoint the task becomes one of stabilization. This offers the important

advantage of not only generating (either asymptotically or in finite time) the quantum

state of interest; in addition, it can also maintain it in a way that is insensitive to

certain types of errors and uncertainties – as we discussed in detail in Refs. [61, 62].

It is clear that, in order for S to converge towards its steady state or, more generally,

a steady-state subspace, by “forgetting” its initial condition, the evolution on S must

be irreversible. The required stabilizing continuous-time or discrete-time dynamics may

be synthesized either in a purely open-loop fashion or, most commonly, by relying on

measurement-based or coherent quantum feedback with a suitable auxiliary system (see

e.g. [9] for an overview).

From the perspective of unitary design, we showed in Ref. [18] how the resources

needed to exactly stabilize a target pure state must include a purely-initialized virtual

subsystem of appropriate dimension. Here, building on a constructive approach

introduced in Ref. [31], we demonstrate how to use a sequence of unitary operations to

stabilize an arbitrary pure state or a subspace on S in finite time. With respect to the

original proposal, which involved repeated uses of a single ancillary qubit, we allow for a

larger auxiliary system, in the same spirit of Sec. 6.1. This, in turn, enables us to avoid

the need for a dissipative resetting operation and obtain the desired output effectively

in a single step. The protocol may be described as follows:

Task Given a target subspace HT ⊆ HS of dimension dT , enact a CPTP map T = ET,0
on S so that ET,0(ρS) ∈ D(HT ) for any ρS ∈ D(HS). This is equivalent to requiring

ET,0(ρS) ≤ ΠT for all initial states, where ΠT is the orthogonal projection onto HT .

Environment An auxiliary system HE ≡ span{|1〉, . . . , |K〉}, where K is the first

integer greater than dS/dT , initially in a pure state, say, ρE ≡ |1〉〈1|. No interaction

with an uncontrollable bath is considered.

Control resources With respect to HA ⊗ HS, we need fast (ideally, instantaneous)

conditional unitaries of the form:

UC,S ≡
∑

k

Uk ⊗ Πk, (20)
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Figure 5. (Color online) Coherent implementation of subspace stabilization protocol.

where the orthogonal projectors Πk are a resolution of the identity on HS, to

be specified later, and Uk are unitary operations on HA, such that Uk|1〉 = |k〉.
Additionally, we need conditional unitaries of form

UC,A ≡
∑

k

|k〉〈k| ⊗ Vk, (21)

where Vk are unitaries on S.

The starting point of the procedure is to decompose HS as the direct sum

HS ≡
K⊕

k=1

Hk,

where the subspaces Hk, k = 1, . . . , k− 1, are isomorphic orthogonal copies of HT , with

H1 ≡ HT , and HK = HS 	
(⊕K−2

k=1 Hk

)
. The idea is to use UC,S to “encode” in the

state of the auxiliary system the information regarding which of the subspaces Hk is

populated, and then to use UC,A in order to obtain a final state that populates only the

target one. To do so, we choose {Πk} in Eq. (20) as the orthogonal projections onto the

corresponding Hk. In addition, we choose Vk in Eq. (21) such that VkΠkV
†
k ≤ Π1. Notice

that this is possible if and only if rank(Πk) ≥ rank(Π1) for all k, as is the case with the

Πk chosen as above. Formally, this simple protocol then consists of the following steps:

(I) Apply UC,S;

(II) Apply UC,A.

It is a matter of direct calculation to verify that the final evolution is:

ET,0(ρS) =
K∑

k=1

VkΠkρSΠkV
†
k , (22)

and ET,0(ρS) ≤ Π1 = ΠT by construction. The protocol is illustrated schematically in

Fig. 5. A few remarks are in order:

• Eq. (22) shows that such a splitting-subspace approach provides a general way

to “embed” a measurement-based, discrete-time feedback protocol, such as those

described in Ref. [63], within a coherent-feedback picture. In fact, the same CPTP

evolution of Eq. (22) may be obtained as the average outcome of the following

procedure: first, perform a projective measurement of an observable with spectral

decomposition O =
∑K

k=1 λkΠk; next, apply a unitary evolution Vk conditional on

the kth outcome of the measurement.
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• When the target is a pure state, HT ≡ span{|ψ〉〈ψ|}, in the above protocol we need

to choose K = dS, which corresponds to the Kraus rank of the extreme CPTP map

that realizes the target all-to-one evolution, namely, T (ρS) = |ψ〉〈ψ|Tr(ρS). The

amount of resources requested by this coherent implementation is thus optimal.

Optimality remains true when the target is a subspace, and dS is a multiple of dT .

This may be seen by recasting the problem as the stabilization of the pure state

|1〉〈1| of a virtual subsystem HV , defined via the decomposition HS ≡ HV ⊗HT ≡
span{|k〉, k = 1, . . . , K} ⊗ HT . Then the same necessary conditions about exact

pure-state preparation ensure that a pure ancilla of dimension K = dS/dT is

precisely the minimal auxiliary resource that allows for engineering the target. We

expect a similar result to hold more generally, when dT does not divide dS.

• While in the coherent-feedback loop described above we have only considered exact

stabilization (hence, an auxiliary system in a pure state), it is straightforward to

extend the method to the case where ρE is mixed, as long as E contains a virtual

subsystem of sufficient dimension initialized in a pure state. Since the resulting

evolution a trace-norm contraction, if the initialization is only ε-approximate the

final state will be at most ε-distant from the intended target.

• The possibility of stabilizing subspaces in one step allows us to envision a coherent-

feedback implementation of the quasi-local dissipative circuits introduced in Refs.

[62] to stabilize entangled pure states in finite time, robustly with respect to the

order of the applied maps. Such circuits can be constructed when the target state

is representable as a product state with respect to a suitable, locality-constrained

decomposition in virtual subsystems of the multipartite system. In this setting,

in order to implement the quasi-local stabilizing maps, we would need to couple

the target system to an auxiliary system consisting of isomorphic copies of each

virtual subsystem – each prepared in a known pure state, in a way that respects

the imposed locality constraints.

7. Outlook

We have presented a mathematical characterization of the resources needed to engineer

CPTP open quantum dynamics based on a coherent, unitary design approach –

as informed by a virtual-subsystem perspective. While our emphasis has been

on establishing general (non-constructive) channel controllability results, we have

shown how our framework is highly flexible and easily applicable to the description

of existing constructive schemes for universal open-system simulation or quantum

channel construction. In addition to the illustrative applications we have discussed,

other quantum protocols of interest, which may be well-worth analyzing in our

unitary-design framework, include collisional and repeated interaction models for non-

Markovian dynamics [64, 65]. From a control-theoretic standpoint, developing explicit

optimal-control algorithms tailored to the equivalent state-transfer problem we have

associated to quantum-channel synthesis is, as we mentioned, an interesting and natural
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direction for investigation. Likewise, while the present analysis has relied crucially

on the assumption of complete unitary controllability of system and environment

together, it would be desirable to characterize more general scenarios where only

partial controllability is assumed – possibly exploring relationships between exact and

approximate controllability notions, in analogy to closed quantum systems [66].
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T 2011 Phys. Rev. A 84 022305

[51] Grace M D, Dominy J, Kosut R L, Brif C and Rabitz H 2010 New J. Phys. 12 015001

[52] Iten R, Colbeck R and Christandl M 2016 E-print: arXiv:1609.08103

[53] Shen C, Noh K, Albert V V, Krastanov S, Devoret M H, Schoelkopf R J, Girvin S M and Jiang

L 2016 ArXiv:1611.03463

[54] Bookatz A D, Wocjan P and Viola L 2014 New J. Phys. 16 045021

[55] Khodjasteh K, Green T J, Sastrawan J, Hayes D, Biercuk M J and Viola L 2013 Nature Commun.

4 2045

[56] Hirose M and Cappellaro P 2016 Nature 532 77–80
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