4 research outputs found

    INTEND OF LUT/MUX COMPLEXS BY USING FPGA MODUS OPERANDI

    Get PDF
    For reducing the area and improving the performance of logical circuits, a combination of Lookup Table (LUT) with multiplexer methodology is applied together. By implementing this kind of architecture a new MUX: LUT structure is designed, which works based on the number of comparators and logical circuits. This implementation is more suitable for both accounting for complex logic block and routing area while maintaining mapping depth. Interconnections are increasingly the dominant contributor to delay, area and energy consumption in Complementary Metal-Oxide Semiconductor (CMOS) digital circuits. The proposed implementation overcomes several limitations found in previous quaternary implementations published so far, such as the need for special features in the CMOS process or power-hungry current-mode cells. We have to use the 512bit quaternary Lookup Table for a high level of operations in the FPGA. The proposed architecture of this paper will be planned to implemented and also analysis the output current, output voltage, area using Xilinx 14.3

    Arquiteturas de hardware para aceleração de algoritmos de reconstrução morfológica

    Get PDF
    Este trabalho apresenta um estudo da implementação de algoritmos para a reconstrução morfológica de imagens bio-medicas em FPGAs (Field Programmable Gate Arrays). As arquiteturas foram baseadas nos algoritmos Sequential Reconstruction (SR) e Fast Hybrid (FH) usando linguagem de descrição de hardware VHDL (Very High Description Language). A metodologia para avaliar a plataforma consistiu em verificar a arquitetura projetada no QuestaSim, fornecendo como dados de entrada as imagens a ser reconstruídas. Adicionalmente, a validação dos resultados da arquitetura foi feita usando linguagem C ou Matlab (usando a função imreconstruct). Além disso, um estudo consumo de recursos de hardware para diferentes tamanhos e conteúdos de imagens foram realizados com o intuito de verificar a aplicabilidade dos algoritmos em arquiteturas reconfiguráveis. Neste trabalho, para a aceleração do processo de reconstrução da imagem foi proposta uma arquitetura reconfigurável baseada no algoritmo FH junto com um algoritmo de aprendizagem de máquina, especificamente uma máquina de vetores de suporte (SVM). Para o treinamento da SVM foi usada uma metodologia de verificação/validação obtendo aproximadamente 20.000 dados de treinamento. Finalmente, foi implementada uma arquitetura que particiona a imagem original em quatro unidades de processamento, processando cada unidade em paralelo. O sistema final implementado fornece um pixel processado por cada ciclo de relógio, depois de um tempo de latência, sendo aproximadamente 8 vezes mais rápida que sua versão não particionada. Adicionalmente, foram feitas comparações rodando os algoritmos de reconstrução morfológica em um processador ARM embarcado dentro do FPGA.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).This work presents a study of the implementation of algorithms for the morphological reconstruction of bio-medical images in FPGAs (Field Programmable Gate Arrays). The architectures were based on Sequential Reconstruction (SR) algorithms and Fast Hybrid (FH), using VHDL (Very High Description Language). The methodology for the evaluation of the platform consisted of verifying the architecture designed in QuestaSim, providing the images to be reconstructed as input data. Additionally, the validation of the results of the architecture was made using C or Matlab languages (using the imreconstruct function). Additionally, a study of hardware resource consumption for different sizes and content of images was conducted, in order to verify the applicability of the algorithms in reconfigurable architectures. In this work, in order to accelerate the image reconstruction process, a reconfigurable architecture based on the FH algorithm is proposed together with machine learning, specifically a support vector machine (SVM). For the SVM training a verification/validation methodology was used, obtaining approximately 20,000 training data. Finally, an architecture was implemented that partitions the original image in four processing units, processing each unit in parallel. The final system implemented provides one pixel processed for each clock cycle, after a latency time, being approximately 8 times faster than its unpartitioned version. Lastly, comparisons were made by running the morphological reconstruction algorithms in an ARM processor embedded within the FPGA

    Equivalence Verification of FPGA and Structured ASIC Implementations

    No full text
    corecore