16 research outputs found

    An Incentive Compatible, Efficient Market for Air Traffic Flow Management

    Full text link
    We present a market-based approach to the Air Traffic Flow Management (ATFM) problem. The goods in our market are delays and buyers are airline companies; the latter pay money to the FAA to buy away the desired amount of delay on a per flight basis. We give a notion of equilibrium for this market and an LP whose solution gives an equilibrium allocation of flights to landing slots as well as equilibrium prices for the landing slots. Via a reduction to matching, we show that this equilibrium can be computed combinatorially in strongly polynomial time. Moreover, there is a special set of equilibrium prices, which can be computed easily, that is identical to the VCG solution, and therefore the market is incentive compatible in dominant strategy.Comment: arXiv admin note: substantial text overlap with arXiv:1109.521

    A Market for Air Traffic Flow Management

    Full text link
    The two somewhat conflicting requirements of efficiency and fairness make ATFM an unsatisfactorily solved problem, despite its overwhelming importance. In this paper, we present an economics motivated solution that is based on the notion of a free market. Our contention is that in fact the airlines themselves are the best judge of how to achieve efficiency and our market-based solution gives them the ability to pay, at the going rate, to buy away the desired amount of delay on a per flight basis. The issue of fairness is simply finessed away by our solution -- whoever pays gets smaller delays. We show how our solution has the potential of enabling travelers from a large spectrum of affordability and punctuality requirements to achieve an end that is most desirable to them. Our market model is particularly simple, requiring only one parameter per flight from the airline company. Furthermore, we show that it admits a combinatorial, strongly polynomial algorithm for computing an equilibrium landing schedule and prices

    Fairness in Slot Allocation

    Full text link
    The recent interpretations of fairness in slot allocation of flights are considered as the word equity and upon these interpretations for fairness, aviation agencies as airspace administrators along with stakeholders have been applying ground delay problem procedure with ration by schedule and compression algorithms as fair distribution of slots among them in reduced capacity airports. The drawback of these approaches is that the slots to be allocated to flights are all of the equal size or duration since the flights to be assigned to slots can not be differentiated. In fact, the absence of a scientific framework of fairness in air traffic management has led to the different contradictory interpretations for it. As proposed in this study, fairness is the minimum deviation from the planned outcome in terms of time, quantity and quality under the optimum share management rule for each stakeholder. To achieve fairness in slot allocation of the airport under reduced and normal capacity, a new allocation rule of ration by fairness is proposed in which the elements of time, quantity and quality are proposed to be the original time of departure or arrival, slot size or duration, and airspace safety and preflight checklist, respectively

    Evaluating air traffic flow management in a collaborative decision-making environment

    Get PDF
    The collaborative decision-making (CDM) framework introduced into ground delay programs in the late 1990s is an integral component of FAA's traffic flow management (TFM) procedures. CDM allows FAA to act as a mediator when managing TFM programs, transferring as much decision making as possible to the individual airlines. Although this approach has been highly successful in practice, it creates a new question for the research community: How should proposed enhancements to TFM be evaluated in a CDM environment? A sequential evaluation procedure, developed in this paper, addresses this question. The procedure includes airline disruption responses and a quasi-compression operation, attempting to mimic the three-stage CDM process. To model airline disruption responses, an integer optimization model was developed to balance operational and passenger considerations in determining which flights to cancel, swap, or delay. The value of this procedure is demonstrated by analyzing an optimization-based TFM approach in the CDM environment

    Fair task allocation in transportation

    Get PDF
    Task allocation problems have traditionally focused on cost optimization. However, more and more attention is being given to cases in which cost should not always be the sole or major consideration. In this paper we study a fair task allocation problem in transportation where an optimal allocation not only has low cost but more importantly, it distributes tasks as even as possible among heterogeneous participants who have different capacities and costs to execute tasks. To tackle this fair minimum cost allocation problem we analyze and solve it in two parts using two novel polynomial-time algorithms. We show that despite the new fairness criterion, the proposed algorithms can solve the fair minimum cost allocation problem optimally in polynomial time. In addition, we conduct an extensive set of experiments to investigate the trade-off between cost minimization and fairness. Our experimental results demonstrate the benefit of factoring fairness into task allocation. Among the majority of test instances, fairness comes with a very small price in terms of cost

    RNN-CNN hybrid model to predict C-ATC CAPACITY regulations for en-route traffic

    Get PDF
    Meeting the demand with the available airspace capacity is one of the most challenging problems faced by Air Traffic Management. Nowadays, this collaborative Demand鈥揅apacity Balancing process often ends up enforcing Air Traffic Flow Management regulations when capacity cannot be adjusted. This process to decide if a regulation is needed is time consuming and relies heavily on human knowledge. This article studies three different Air Traffic Management frameworks aiming to improve the cost-efficiency for Flow Manager Positions and Network Manager operators when facing the detection of regulations. For this purpose, two already tested Deep Learning models are combined, creating different hybrid models. A Recurrent Neural Network is used to process scalar variables to extract the overall airspace characteristics, and a Convolutional Neural Network is used to process artificial images exhibiting the specific airspace configuration. The models are validated using historical data from two of the most regulated European regions, resulting in a novel framework that could be used across Air Traffic Control centers. For the best hybrid model, using a cascade architecture, an average accuracy of 88.45% is obtained, with an average recall of 92.16%, and an average precision of 86.85%, across different traffic volumes. Moreover, two different techniques for model explainability are used to provide a theoretical understanding of its behavior and understand the reasons behind the predictionsThis work was funded EUROCONTROL under Ph.D. Research Contract No. 18-220569-C2 and by the Ministry of Economy, Industry, and Competitiveness of Spain under GrantNumber PID2020-116377RB-C21. This project has also received funding from the SESAR Joint Undertaking under the European Union鈥檚 Horizon 2020 research and innovation programme under grant agreement No. 783287.Peer ReviewedPostprint (published version

    Reducing ATFM delays through strategic flight planning

    Get PDF
    This paper presents an integer programming model for strategic redistribution of flights so as to respect nominal sector capacities, in short computation times for large-scale instances. The main contribution lies in the combination of tackling large-scale strategic flight planning using hard capacity constraints, while considering the whole network (i.e., both airports and sectors). Real historic data for network and traffic description are used for our test instance. Strategic and tactical impact assessments show that early flight planning can lead to the reduction of delays and their costs, showing potential for actual implementation

    Noise-Aware and Equitable Urban Air Traffic Management: An Optimization Approach

    Full text link
    Urban air mobility (UAM), a transformative concept for the transport of passengers and cargo, faces several integration challenges in complex urban environments. Community acceptance of aircraft noise is among the most noticeable of these challenges when launching or scaling up a UAM system. Properly managing community noise is fundamental to establishing a UAM system that is environmentally and socially sustainable. In this work, we develop a holistic and equitable approach to manage UAM air traffic and its community noise impact in urban environments. The proposed approach is a hybrid approach that considers a mix of different noise mitigation strategies, including limiting the number of operations, cruising at higher altitudes, and ambient noise masking. We tackle the problem through the lens of network system control and formulate a multi-objective optimization model for managing traffic flow in a multi-layer UAM network while concurrently pursuing demand fulfillment, noise control, and energy saving. Further, we use a social welfare function in the optimization model as the basis for the efficiency-fairness trade-off in both demand fulfillment and noise control. We apply the proposed approach to a comprehensive case study in the city of Austin and perform design trade-offs through both visual and quantitative analyses.Comment: 30 pages, 15 figure

    Enhanced air traffic flow and capacity management under trajectory based operations considering traffic complexity

    Get PDF
    Tesi amb menci贸 internacional.(English) The Air Traffic Flow and Capacity Management (ATFCM) aims at maintaining the forecast traffic demand below the estimated capacity in airports and airspace sectors. The purpose is to maintain the workload of the air traffic controllers under safe limits and avoid overloaded situations. At present, the demand and the capacity management initiatives are deployed separately. Given a forecast traffic demand, the different air navigation service providers allocate their air traffic control resources providing the airspace sectorisations. Then, the network manager addresses the remaining overloads by allocating delay using the CASA algorithm based on a ration-by-schedule principle. It should be noted that some ad-hoc flights might be re-rerouted or limited in cruise altitude in order to avoid congested airspace by submitting a new flight plan. Hence, the previously chosen sectorisations may be not optimum once the demand management initiatives are deployed. Moreover, the flexibility of the airspace users is limited since they cannot express their preferences. Furthermore, the demand and the capacity are currently measured using entry counts as proxy of the air traffic control workload, which is rather easy to measure or estimate. Yet, this metric cannot evaluate the difficulty to handle different traffic patterns inside the sectors leading to the use of capacity buffers. This PhD focuses on overcoming the limitations of the current ATFCM system outlined before by the introduction of complexity metrics (instead of entry counts) in order to measure the traffic load, the better consideration of the airspace users preferences allowing the possibility of submitting alternative trajectories to avoid congested airspace, and the holistic integration of the demand and capacity management into the same optimisation problem. First, the integration of two capacity management initiatives, i.e. Dynamic Airspace Configuration (DAC) and Flight Centric ATC (FCA), is studied proving some benefits when such integration is dynamic. Next, a new concept of operation is proposed where the airspace users have the option of submitting alternative trajectories and the network manager is the responsible for the demand management (delay allocation and choice of the used trajectory) and the capacity management (selection of the airspace sectorisation), considering a network-wide optimisation. This concept of operations is mathematically modelled with two Demand and Capacity Balancing (DCB) models addressing only demand management and three holistic DCB models where the demand and the capacity management measures are considered together in the same optimisation problem. A first model aims at choosing the best trajectory and delay allocation per flight while analysing the traffic load with entry counts at traffic volume level. It is solved in a realistic case study using the historical regulations providing a 76.84% of reduction in the arrival delay if compared to the current system.(Catal脿) La gesti贸 dels fluxos de tr脿nsit i de la capacitat (ATFCM) t茅 com a objectiu mantenir la demanda de tr脿nsit prevista per sota de la capacitat estimada dels aeroports i els sectors de l鈥檈spai aeri. Actualment, les iniciatives de gesti贸 de la demanda i de gesti贸 de la capacitat es duen a terme separadament. Donada una previsi贸 de tr脿nsit, els diferents prove茂dors de serveis de navegaci贸 a猫ria assignen els seus recursos proporcionant les sectoritzacions de l鈥檈spai aeri. Despr茅s l鈥檃dministrador de la xarxa tracta les sobrec脿rregues restants mitjan莽ant l鈥檃ssignaci贸 de retards utilitzant l'algoritme CASA, basat en l'ordenaci贸 per ordre d鈥檃rribada. A alguns vols tamb茅 se鈥檒s pot canviar la ruta o se鈥檒s pot restringit l鈥檃ltitud del creuer per tal d鈥檈vitar zones congestionades requerint la presentaci贸 d鈥檜n nou pla de vol. Aix铆 doncs, les sectoritzacions pr猫viament escollides poden ser no 貌ptimes una vegada s鈥檌mplementin les iniciatives de gesti贸 de la demanda. A m茅s, la flexibilitat dels usuaris de l鈥檈spai aeri 茅s limitada ja que no poden expressar les seves prefer猫ncies. Altrament, la demanda i la capacitat es mesuren actualment comptant el nombre d鈥檃rribades com a proxy de la c脿rrega de treball del control del tr脿nsit aeri. No obstant aix貌, aquesta m猫trica no pot evaluar la dificultat de gestionar diferents patrons de tr脿nsit dins els sectors, la qual cosa condueix a la utilitzaci贸 de marges de capacitat. Aquest PhD es centra en superar les limitacions de l鈥檃ctual sistema d鈥橝TFCM indicades anteriorment mitjan莽ant la introducci贸 de m猫trics de complexitat (en lloc del n煤mero d鈥檃rribades) per a mesurar el tr脿nsit, la millor consideraci贸 de les prefer猫ncies dels usuaris de l鈥檈spai aeri permetent la possibilitat d鈥檜tilitzar trajectories alternatives per a evitar la congesti贸 de l鈥檈spai aeri, i la integraci贸 hol铆stica de la gesti贸 de la demanda i de la capacitat en el mateix problema d鈥檕ptimitzaci贸. Primer, s鈥檈studia la integraci贸 de dues iniciatives de gesti贸 de la capacitat: DAC i FCA. S鈥檕btenen beneficis quan la integraci贸 茅s din脿mica. Despr茅s, es proposa un nou concepte operacional on els usuaris de l鈥檈spai aeri tenen l'opci贸 de proposar trajectories alternatives i l鈥檃dministrador de la xarxa 茅s el responsable de la gesti贸 de la demanda (assignaci贸 de retards i elecci贸 de la traject貌ria utilitzada) i de la capacitat (selecci贸 de la sectoritzaci贸 de l鈥檈spai aeri) considerant l鈥檕ptimitzaci贸 de tota la xarxa. Aquest concepte operacional es formula amb dos models de DCB que aborden nom茅s la gesti贸 de la demanda i tres models hol铆stics on la gesti贸 de la demanda i de la capacitat es consideren conjuntament en el mateix problema d鈥檕ptimitzaci贸. Un primer model es centra en escollir la millor traject貌ria i assignaci贸 de retard per vol, mentre que el tr脿nsit s'avalua mitjan莽ant el n煤mero d鈥檃rribades als volums de tr脿nsit. Es resol un cas d鈥檈studi realista on s鈥檜tilitzen les regulacions hist貌riques aconseguint un 76.84% menys de retard a l'arribada si es compara amb els sistema actual. Un dels tres models hol铆stics de s鈥檈studia en detall, en concret el que utilitza m猫triques de complexitat i optimitza les sectoritzacions de l鈥檈spai aeri escollint entre un seguit de configuracions disponibles. Aquest model es tracta amb un nou m猫tode h铆brid presentat en aquest PhD i que combina la simulaci贸 del recuit i la programaci贸 din脿mica. En un primer cas d'estudi, aquest nou m猫tode es compara amb el m猫tode exacte resolt amb Gurobi proporcionant un millor rendiment principalment quan la dificultat del problema augmenta. En un segon cas d鈥檈studi es realitza un estudi de sensibilitat del par脿metre que modela una penalitzaci贸 per a diferents configuracions consecutives. Finalment, es resol un escenari a gran escala amb el m猫tode h铆brid proporcionant un 74.01% menys de retard a l'arribada i un 28.47% menys en el cost de la sectoritzaci贸 resultant en comparaci贸 amb un escenari de refer猫ncia que representa les millors condicions del sistema actual.(Espa帽ol) La gesti贸n de los flujos de tr谩fico y de la capacidad (ATFCM) pretende mantener la demanda de tr谩fico prevista por debajo de la capacidad estimada de los aeropuertos y los sectores del espacio a茅reo. Actualmente, las iniciativas de gesti贸n de la demanda y de la capacidad se implementan por separado. Ante una previsi贸n de tr谩fico, los diferentes proveedores de servicios de navegaci贸n a茅rea asignan sus recursos proporcionando las sectorizaciones del espacio a茅reo. Despu茅s, el administrador de la red trata las sobrecargas restantes mediante la asignaci贸n de retrasos utilizando el algoritmo CASA basado en un principio de ordenaci贸n por orden de llegada. A algunos vuelos tambi茅n se les puede cambiar de ruta o limitar la altitud de crucero para evitar la congesti贸n del espacio a茅reo requiriendo de un nuevo plan de vuelo. As铆 pues, las sectorizaciones elegidas anteriormente pueden no ser 贸ptimas una vez que se implementen las iniciativas de gesti贸n de la demanda. Adicionalmente, la flexibilidad de los usuarios del espacio a茅reo es limitada ya que no pueden expresar sus preferencias. Adem谩s, la demanda y la capacidad se miden actualmente contando el n煤mero de llegadas como proxy de la carga de trabajo del control del tr谩fico a茅reo. Sin embargo, esta m茅trica no puede evaluar la dificultad de controlar diferentes patrones de tr谩fico dentro de los sectores lo que conduce al uso de m谩rgenes de capacidad. Este PhD se centra en superar las limitaciones del sistema de ATFCM actual descritas anteriormente mediante la introducci贸n de m茅tricas de complejidad (en lugar del n煤mero de llegadas) para medir la carga de tr谩fico, la mejor consideraci贸n de las preferencias de los usuarios del espacio a茅reo permitiendo la posibilidad de la presentaci贸n de trayectorias alternativas para evitar la congesti贸n, y la integraci贸n hol铆stica de la gesti贸n de la demanda y de la capacidad en un mismo problema de optimizaci贸n. Primero, se estudia la integraci贸n de dos iniciativas de gesti贸n de la capacidad, DAC y FCA, demostrando beneficios cuando dicha integraci贸n es din谩mica. A continuaci贸n, se propone un nuevo concepto operacional donde los usuarios del espacio a茅reo tienen la opci贸n de presentar trayectorias alternativas y el administrador de la red es el responsable de la gesti贸n de la demanda (asignaci贸n de retrasos y elecci贸n de la trayectoria utilizada) y la gesti贸n de la capacidad (selecci贸n de la sectorizaci贸n), considerando una optimizaci贸n de toda la red. Este concepto operacional se modela con dos modelos de DCB que abordan s贸lo la gesti贸n de la demanda y tres modelos hol铆sticos donde las medidas de gesti贸n de la demanda y de la capacidad se consideran conjuntamente en el mismo problema de optimizaci贸n. Un primer modelo pretende elegir la mejor asignaci贸n de trayectoria y retraso por vuelo mientras se analiza la carga de tr谩fico con el n煤mero de llegadas a nivel de volumen de tr谩fico. Se resuelve un caso de estudio utilizando las regulaciones hist贸ricas proporcionando un 76.84% de reducci贸n en el retraso en la llegada si se compara con el sistema actual. El model hol铆stico que utiliza m茅tricas de complejidad y optimiza las sectorizaciones del espacio a茅reo escogiendo entre un conjunto de configuraciones disponibles se estudia en detalle. Este modelo se trata con un nuevo m茅todo h铆brido basado en el recocido simulado y la programaci贸n din谩mica. En un primer caso de estudio, se compara este nuevo m茅todo con el m茅todo exacto resuelto con Gurobi proporcionando un mejor rendimiento cuando aumenta la dificultad del problema. En un segundo caso de estudio se realiza un estudio de sensibilidad del par谩metro que modela una penalizaci贸n para diferentes configuraciones consecutivas. Finalmente, se resuelve un escenario a gran escala con el m茅todo H铆brido proporcionando menores valores de retraso en llegada y menores costes en la sectorizaci贸n resultante en comparaci贸n con un escenario de referencia que representa las mejores condiciones del sistema actual.Postprint (published version
    corecore