
Evaluating Air Traffic Flow Management in a 

Collaborative Decision-Making Environment 

Douglas Fearing
 
(corresponding author) 

Affiliation: Technology and Operations Management, Harvard Business School, 

Address: Harvard Business School, Morgan Hall 491, Soldiers Field Road, Boston, MA 02136 

Phone: 617-495-6614 

Email: dfearing@hbs.edu 

Cynthia Barnhart 

Affiliation: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology 

Address: Massachusetts Institute of Technology, Room 2-106, 77 Massachusetts Avenue, Cambridge, MA  02139 

Phone: 617-253-3815 

Email: cbarnhart@mit.edu 

 

Effective word count: 7487 (6237 text words + 1 figure + 4 tables) 

Revision submitted on August 30
th
, 2010. 

  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/10128821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fearing & Barnhart  2 

 

 

Abstract:  The Collaborative Decision-Making (CDM) framework introduced into Ground Delay Programs (GDPs) 

in the late 1990s is an integral component in the Federal Aviation Administration’s (FAA’s) Traffic Flow 

Management (TFM) procedures.  CDM allows the FAA to act as a mediator when managing TFM programs, 

pushing as much decision-making as possible to individual airlines.  Though this approach has been highly 

successful in practice, it creates a new question for the research community – how should proposed enhancements to 

TFM be evaluated in a CDM environment?  In our paper, we develop a sequential evaluation procedure to address 

this question.  Our procedure includes airline disruption responses and a quasi-compression operation, attempting to 

mimic the three-stage CDM process.  To model airline disruption responses, we develop an integer optimization 

model that balances operational and passenger considerations to make determinations on which flights to cancel, 

swap, or delay.  We demonstrate the value of our procedure by analyzing an optimization-based TFM approach in 

the CDM environment. 

In this paper, we develop a sequential evaluation procedure to evaluate air traffic flow management 

approaches in a collaborative decision-making (CDM) environment.  After allocating traffic flow 

management (TFM) capacities, the sequential evaluation procedure i) uses an airline disruption response 

model to approximate each airline’s flight cancelations and swaps, ii) performs a quasi-compression 

operation on the combined schedule, and iii) calculates passenger delays based on the result. 

In Section 1, we provide a brief review of related literature.  Section 2 describes the components of the 

sequential evaluation procedure, including the airline disruption responses and quasi-compression.  

Section 3 describes how we construct the scenarios used in our analysis, including the estimation of 

planned aircraft routings and passenger itineraries.  Last, in Section 4, we use the approach to analyze the 

benefits of an optimization-based TFM allocation approach in a CDM environment. 

1 Literature Review 

There have been many publications related to Collaborative Decision-Making (CDM).  The CDM 

paradigm was developed through a joint effort involving the FAA, the airline community, Metron 

Aviation Inc., the Volpe National Transportation Systems Center, and the academic community.  The 

CDM approach was first incorporated into the FAA’s Ground Delay Program (GDP) in the late 1990s and 

later incorporated into Airspace Flow Programs (AFPs) for managing en route congestion (1).  Chang, et 

al. provides a good description of the highly successful CDM approach (2).  Ball, et al. provides an 

efficient dual network flow formulation for the static-stochastic GDP and show how this formulation can 

be incorporated into a CDM framework with equity considerations (3).  Kotnyek and Richetta (4) extend 

the Richetta and Odoni (5) static-stochastic formulation to incorporate equity consideration.  In the 

process, they demonstrate that the Ball et al. model can be described as a special case.  Vossen and Ball 

extend an integer programming formulation for the GDP to approximate the CDM process (6).  They also 

describe how the compression step of the CDM process can be considered a mediated bartering step 

between airlines.  In compression, the FAA performs a sequence of 1-to-1 exchanges to fill in gaps 

created by cancelations and reward the airlines that canceled the flights. 
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The dynamic nature of CDM makes it difficult to evaluate the impact of proposed TFM enhancements, 

because efficiencies gained during allocation could be lost in subsequent airline responses and 

compression.  This is especially true in a multi-resource setting where it is not clear how compression 

would or should be applied.  There are many papers that have evaluated the impacts of proposed multi-

resource TFM enhancements in terms of their impact on allocated flight delays (e.g., Bertsimas and 

Patterson (7), Andreatta, Brunetta, and Guastalla (8), Bertsimas, Lulli, and Odoni (9), and Barnhart, et al. 

(10)).  We believe this paper represents the first attempt to characterize the impact of the CDM process in 

the context of a multi-resource optimization-based allocation. 

2 Sequential Evaluation Procedure 

The sequential evaluation procedure we have developed is depicted in Figure 1.  The procedure takes as 

input an allocated schedule based on one or more TFM programs.  From this schedule, each airline is 

allotted capacity (or slots) for TFM resources (i.e., airports or flow constrained areas (FCAs)).  Capacities 

are assumed to be infinite for resources with no TFM program in place.  To attempt to mimic airline 

operations, we group sub-contracted carriers with their parent carriers.  The full list of the 15 airline 

groupings we consider is provided in Table 1.  These groupings are determined based on the prevalence 

of corresponding multi-carrier itineraries in the Airline Origin and Destination Survey (DB1B) from the 

Bureau of Transportation Statistics (11). 
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Figure 1: Process workflow for sequential evaluation procedure with input in  and outputs in  

To approximate airline disruption responses, we utilize a modified TFM scheduling model, which is 

described in Section 2.2.  The output of this model is a feasible airline flight schedule, incorporating flight 

cancelations and maintaining aircraft flow balance.  Because allocated capacities are derived from a 

feasible controlled schedule, the combined airline schedules form a feasible schedule relative to the initial 

TFM programs.  The combined flight schedule and its calculated passenger delays are two of the outputs 

from our sequential evaluation procedure.  We then perform a quasi-compression to fill in gaps created by 

flight cancelations, ensuring that no flight receives more delay in the compressed schedule.  The details of 

and motivation for the quasi-compression procedure are described in Section 2.4.  The compressed flight 

schedule and its calculated passenger delays form the final two outputs of our sequential evaluation 

procedure.  Before describing the individual components of the sequential evaluation procedure, we 

define the required data and notation in Section 2.1. 
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Airline Codes Airline Names 

AA, MQ American Airlines & American Eagle Airlines 

DL, EV, OH Delta Airlines, Atlantic Southeast Airlines, & Comair 

CO, XE Continental Airlines & ExpressJet Airlines 

NW, 9E Northwest Airlines & Pinnacle Airlines 

AS Alaska Airlines 

AQ Aloha Airlines 

B6 JetBlue Airways 

F9 Frontier Airlines 

FL AirTran Airways 

HA Hawaiin Airlines 

OO SkyWest Airlines 

UA United Airlines 

US US Airways 

WN Southwest Airlines 

YV Mesa Airlines 

Table 1: Airline groupings for sequential evaluation procedure 

2.1 Data and Notation 

The notation used for the airline disruption response model builds on the notation defined in (10): 

� = set of discrete time intervals; ℛ = set of capacity-controlled resources; ��� = capacity of resource � over time interval �; ℱ = set of flights; |
| = number of steps in controlled flight plan for flight 
; ℐ(
) = set of step indices in controlled flight plan for flight 
; �(
, �) = resource required by flight step � for flight 
; �(
, �) = earliest start time for flight step � for flight 
; and �(
, �) = processing time of flight step � for flight 
. 

Because each airline’s disruption response is determined independently, there is no need to index these 

terms by airline.  For example, when determining the disruption response for Southwest, ℱ will refer to 

all of the Southwest flights, and ��� will refer to the capacity allocated to Southwest for resource � and 

time interval �.  For each flight, we extend ℐ(
) to include a departure index, 1, and an arrival index, |
|.  
In addition to the above, the airline disruption response depends on planned aircraft routings and booked 

passenger itineraries.  We specify the aircraft type for each scheduled flight, �(
) ∈ �, where � 
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represents the set of aircraft types for the airline.  The aircraft type is a combination of the operating 

carrier and International Civil Aviation Organization (ICAO) aircraft code for the flight.  Each planned 

aircraft routing, � ∈ �, is then represented as a sequence of flights an aircraft is scheduled to fly, [
�, … , 
�], where [�]� represents the first flight and [�](�) the last.  The minimum aircraft turnaround time 

(i.e., the minimum time between arrival and subsequent departure) is assumed to be constant across all 

airports and aircraft types, and is denoted by �.  To maintain aircraft flow balance, we also specify the 

origin and destination of each flight, ��� (
) and !"��(
) respectively, letting # represent the set of all 

airports. 

Passenger itineraries are either non-stop, represented by a single flight 
, or one-stop, represented by a 

pair of flights (
�, 
$).  Each flight 
 ∈ ℱ represents a valid non-stop itinerary, and we let the set %& 

represent the set of booked one-stop itineraries, where at least one flight in each flight pair is in ℱ.  We do 

not require both flights to be in ℱ, because one flight may be operated by another airline.  For these cases, 

we need to know the planned connection time between the arrival of flight 
� and the departure of flight 
$, '(
�, 
$), which we compare to the minimum connection time, '()* , to determine a missed 

connection.  We let ,�(
) represent the number of non-stop passengers booked on flight 
 and ,�(
�, 
$) 
represent the number of passengers booked on the one-stop itinerary represented by the pair of flights (
�, 
$) ∈ %&.  The number of seats on flight 
 is represented by ,�(
). 
If a passenger itinerary is disrupted, the estimated delay associated with re-accommodation depends on 

the itinerary and the type of disruption.  For non-stop itineraries, the only type of disruption we consider 

is a flight cancelation.  Thus, we specify the re-accommodation delay associated with a flight cancelation 

for non-stop passengers booked on flight 
 as �!(
).  For one-stop itineraries, the possible types of 

disruptions are first flight cancelation, second flight cancelation, or missed connection; we specify the re-

accommodation delays as �!�(
�, 
$), �!$(
�, 
$), and �!-(
�, 
$) respectively. 
2.2 Ration-by-Schedule Exponential Penalty Model 

In this section, we describe the deterministic, multi-resource Ration-by-Schedule Exponential Penalty 

(RBS-EP) formulation that provides the foundation for the airline disruption response model.  Further 

details regarding the development of the RBS-EP model can be found in (10). 

2.2.1 Decision Variables  

./0� = 21, if 5light plan step � for 5light 
 has started by time �; and0, otherwise. I (1) 

2.2.2 Constraints  
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./0� ≤  ./0(�K�) ∀
 ∈ ℱ, ∀� ∈ ℐ(
), ∀� ∈ M0 . . . N −  2Q; (2)

./0(R S�) = 1 ∀
 ∈ ℱ, ∀� ∈ ℐ(
); (3)

./0(T(/,0)S�) = 0 ∀
 ∈ ℱ, ∀� ∈ ℐ(F ) s. t.  α(
, �) >  0; (4)

./(0K�)� = ./0X�ST(/,0K�)KT(/,0)Y ∀
 ∈ ℱ, ∀� ∈ ℐ(
)\ M|
|Q; (5)

[ \./0� − ./0X�S](/,0)Y^M(/,0):�(/,0)`�̂Q ≤ ��̂� ∀�̂ ∈ ℛ, ∀� ∈ �. (6)

2.2.3 Objective Function  

In the RBS-EP model, the cost of each additional interval of delay grows exponentially beyond a 

threshold determined by independent first-scheduled, first-served allocations for each TFM-controlled 

resource.  To express the objective function, we let !bcd(
, �) be the delay that would be assigned to step � of flight 
 based on independent allocations.  The following two equations define the cost, e/� , 
associated with the last step of flight 
 being scheduled at time �.   

!fghbcd (
) = max0∈ℐ(/)M!bcd(
, �)Q ;  and (7) 

e/� = minj� − �(
, |
|), !fghbcd (
)k + [ mn�ST(/,|/|)Sopqrstu (/)
n`� . (8) 

 

In equation (8), the base of the exponent, m, controls the trade-off between fairness and delay.  Using this 

notation, the RBS-EP objective function is: 

min [ v [ e/�X./|/|� − ./|/|(�S�)YRS�
�`T(/,|/|) w/∈ℱ . 

 

(9) 

2.3 Airline Disruption Response Model 

In the airline disruption response model, we cancel and reschedule flights using an integer optimization 

model extended from the RBS-EP formulation.  The decisions on flight schedules and cancelations are 

based on a multi-part objective function that approximates both operational and passenger considerations.  

Additionally, using planned aircraft routings, the model ensures that flow balance is maintained for each 

airline, airport, and aircraft type. 

2.3.1 Decision Variables 

For each one-stop itinerary (
�, 
$) ∈ %� where both flights are in ℱ, we introduce two binary variables to 

represent whether the itinerary is disrupted due to the second flight being canceled or due to a missed 
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connection.  Additionally, we introduce a linear decision variable to measure the delay when no 

disruptions occur. 

x/y/z = {1, if itinerary (
�, 
$) is disrupted due to 5light 
$ being canceled; and 0, otherwise. I (10) 

 ~/y/z  = {1, if itinerary (
�, 
$) is disrupted due to a missed connection; and 0, otherwise. I (11) 

!/y/z  ≥ 0 (12) 

2.3.2 Constraints 

The first change to the RBS-EP model is allowing cancelations by replacing constraints (3) with the 

following to ensure that if one step of a flight is canceled, then so are all others. 

./0(RS�) =  ./(0K�)(RS�)  ∀
 ∈ ℱ, ∀� ∈ ℐ(
) ∖ M|
|Q. (13) 

Additionally, we add constraints to ensure that for each airport, � ∈ #, and aircraft type, � ∈ �, flow 

balance is maintained.  To simplify exposition, in equation (14), we define Δ(�, �, �) as the difference 

between the number of flights of aircraft type � that arrive at airport � by time (� − �) and the number of 

flights of aircraft type � that depart from airport � by time �. 
Δ(�, �, �) ≜ [ ./�(�S�)M/∈ℱ:o���(/)`�,�(/)`�Q − [ ./|/|�M/∈ℱ:��0�(/)`�,�(/)`�Q . (14) 

Note that if airport � has no aircraft of type � available at the beginning of the model time period, Δ(�, �, �) equals the number of these aircraft available for departure.  Because the model time period ends 

at time N, we use Δ(�, �, N + �) to specify the difference between arrivals and departures at the end of 

the model time period. 

For each aircraft routing, �, we assume there is an aircraft of type �([�]�) available for the first flight in 

the sequence at its scheduled departure time, �([�]�, 1), and origin airport, ��� ([�]�).  Additionally, for 

each aircraft routing, we require an aircraft of type �X[�](�)Y at the destination airport of the last flight, 

!"��X[�](�)Y, at the end of the model time period.  Thus, we define ,(�, �, �) as the cumulative number of 

aircraft of type � available at airport � by time � and ,(�, �) as the number of aircraft of type  � required 

at airport � at the end of the model time period. 

,(�, �, �) ≜  |M� ∈ �: ��� ([�]�) = �, �([�]�) = �, �([�]�, 1) ≤ �Q|; and (15) 

,(�, �) ≜ �j� ∈ �: !"��X[�](�)Y = �, �([�]�) = �k�. (16) 
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Using these definitions, we add the following constraints to the model ensure flow balance. 

Δ(�, �, �) + ,(�, �, �) ≥ 0 ∀� ∈ #, ∀� ∈ �,∀� ∈ �.  (17) 

Δ(�, �, N + �) + ,(�, �, N) = ,(�, �) ∀� ∈ #, ∀� ∈ �. (18) 

In addition to forcing delay propagation through the airline network, constraints (17) and (18) guarantee 

that flight cancelations occur in cycles, and thus that no deadheading (flying empty) is required to 

reposition aircraft for future operations. 

Next, we add constraints to ensure that each of the decision variables defined in Section 2.3.1 takes the 

appropriate value.  The first constraints ensure that we consider a one-stop itinerary to be disrupted by a 

second flight cancelation only if the first flight is not canceled. 

x/y/z + ./z|/z|(RS�) ≥ ./y|/y|(RS�)  ∀(
�, 
$) ∈ %�: 
�, 
$ ∈ ℱ. (19) 

In our minimization objective, the cost coefficient for x/y/zwill be strictly positive, which ensures that, in 

an optimal solution, x/y/z  will equal 1 if and only if  ./y|/y|(RS�) = 1 and ./z|/z|(RS�) = 0, as desired. 

The next constraints ensure that we consider a one-stop itinerary to be disrupted by a missed connection 

only if both flights are scheduled and the time between the arrival of the first flight and departure of the 

second is less than the minimum connection time, '()*. 

./z�� ≤ ./y|/y|(�S�min) + 1 − ./y|/y|(RS�) + ~/y/z  ∀(
�, 
$) ∈ %�: 
�, 
$ ∈ ℱ, ∀� ∈ �. (20) 

That is, constraints (20) ensure that flight 
$ cannot depart by time � unless 1) flight 
� arrives by time (� − 'min), 2) flight 
� is canceled, or 3) ~/y/z is set to 1.  As with x/y/z , the cost coefficient for ~/y/z  will 

be strictly positive, ensuring that, in an optimal solution, ~/y/z  will equal 1 if and only if flights 
� and 
$ 
are scheduled and the connection time between the two is less than 'min. 
Last, we add constraints to ensure that the flight delay associated with a one-stop itinerary is positive only 

if the itinerary is not disrupted.  To specify this constraint, we first define expressions to calculate whether 

an individual flight is canceled, and if not, the associated delay.  We can calculate the cancelation 

expression as: 

e~(
) = (1 − I./|/|(RS�))I. (21) 

We consider the delay for flight 
 to be 0 if the flight is canceled, thus we calculate the delay as: 
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!(
) = XN − �(
, |
|)YI./|/|(RS�) I −  [ ./|/|�
RS�

�`T(/,|/|) . (22) 

Note that ./|/|� = 0 for all � when flight 
 is canceled, therefore !(
) = 0 in this case, as desired.  When 

flight 
 is scheduled, ./|/|RS� is guaranteed to equal 1 based on constraints (2).  In this case, !(
) counts 

the number of intervals that ./|/|� = 0 between �(
, |
|) and N, which equals the delay for flight 
.  

Using these definitions, we define the flight delay constraints for one-stop itineraries where both flights 

are in ℱ. 

!/y/z ≥ !(
$) − NXe~(
�) + ~/y/zY  ∀(
�, 
$) ∈ %�: 
�, 
$ ∈ ℱ. (23) 

The second term in the right-hand side of constraints (23) allows the flight delay decision variable, !/y/z , 
to equal 0 if either flight 
� is canceled or there is a missed connection.  Thus, as with constraints (19) and 

(20), because the costs associated with flight delays are strictly positive, !/y/z will equal !(
$) if and only 

if flight 
� is scheduled and there is no missed connection.  Note that in the case flight 
$ is canceled, !(
$) will equal 0 by definition. 

2.3.3 Objective Function 

The objective function that drives scheduling and cancelation decisions is composed of three parts: i) 

small fixed benefits for flight cancelations, ii) superlinear operating costs associated with flight delays, 

and iii) estimated passenger delay costs.  For example, in deciding which flights to cancel, there would be 

no operating costs, so the fixed cancelation benefit must be balanced against the expected passenger 

delays associated with re-accommodating all passengers booked on the flight.  We measure each of the 

objective function components relative to expected passenger delay minutes, scaling the cancelation 

benefit by the number of seats on the aircraft and the operating costs by the number of seats times a factor 0 < � < 1. 
The benefit for flight cancelation is defined by a single parameter, �.  Thus, we specify the cancelation 

component of the objective function,  ��*�(.), as follows. 

 ��*�(.) = � [[,�(
) ⋅ e~(
)]/∈ℱ . (24) 

In practice, the operational costs and constraints associated with flight delays are defined by many factors, 

including crew availability and work restrictions, aircraft maintenance schedules, etc.  Because we do not 

have access to this information, we instead use a superlinear delay cost as an approximation.  That is, we 

assume that as flight delays increase, it becomes increasingly difficult to operate the flight.  The form of 
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the delay cost function we use is similar to the exponential penalty cost function utilized by the RBS-EP 

model.  For the airline disruption response, we utilize a fixed delay threshold, � ∈ ℕK.  Above the 

threshold, the delay costs are piecewise linear, with the slope of each subsequent piece increasing by a 

factor of m.  Unlike the RBS-EP model, we specify a parameter, � ∈ ℕK, which defines the length of each 

of the pieces.  Using this notation, the un-scaled delay costs associated with flight 
 arriving at time �, e/�, 
are defined as follows. 

e/� = minM� − �(
, |
|), �Q + [ m��)�\n �� ^�ST(/,|/|)S�
n`� . (25) 

In equation (25), the function ceil(⋅) determines the integer ceiling of its argument.  It is instructive to 

compare the form of equation (25) to equation (8).  Using these definitions, the operating cost component 

of the objective function,  ���(.), is specified as: 

 ���(.) = � [ v,�(
) ⋅ [ e/�X./|/|� − ./|/|(�S�)YRS�
�`T(/,|/|)  w/∈ℱ . (26) 

If flight 
 is canceled, the corresponding flight delay cost term in equation (26) will equal 0, because 

X./|/|� − ./|/|(�S�)Y = 0 for all �. 
The last and most complex component of the objective function represents the estimated passenger delay 

costs.  To calculate these costs, we split passenger itineraries into four categories: i) non-stop itineraries, 

ii) one-stop itineraries where 
� ∉ ℱ, iii) one-stop itineraries where 
$ ∉ ℱ, and iv) all other one-stop 

itineraries.  The estimated passenger delay cost,  ����(.), is the sum of these four categories:  �����(.), 
 $����(.),   ����(.), and  ¡����(.) respectively. 
For non-stop passengers, the delays are due to either flight delays or flight cancelation, thus: 

 �����(.) = [ ,�(
)[!(
) + �!(
)e~(
)]/∈ℱ . (27) 

For one-stop itineraries where 
� ∉ ℱ we assume that flight 
� arrives on-time, thus all of the delay costs 

are associated with flight 
$, and: 

 $����(.) = [ ,�(
�, 
$)[!(
$) + �!$(
�, 
$)e~(
$)]M(/y,/z)∈%�:/y∉ℱQ . (28) 
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For one-stop itineraries where 
$ ∉ ℱ, we assume that flight 
$ departs on-time, thus the connection is 

missed flight 
� arrives too late to satisfy the minimum connection time.  The last arrival interval for 

flight 
� to avoid a missed connection is �̅(
�, 
$) =  �(
�, |
�|) + '(
�, 
$) −  'min, therefore: 

  ����(.) = [ ,�(
�, 
$) £�!�(
�, 
$)e~(
�)M(/y,/z)∈%�:/z∉ℱQ+ �!-(
�, 
$) \1 − ./y|/y|�̅(/y,/z) − e~(
�)^¤. (29) 

For the second term in equation (29), we accumulate the re-accommodation delay �!-(
�, 
$) if flight 
� 
has not arrived by time  �̅(
�, 
$) and it is not canceled. 

For one-stop itineraries where both flights are under the airline’s control, disruptions can occur due to 

cancelations of either flight or due to a missed connection.  Note that if the itinerary is not disrupted, 

passengers experience flight delays based only on the second flight in the itinerary, thus: 

 ¡����(.) = [ ,�(
�, 
$)¥�!�(
�, 
$)e~(
�) + �!$(
�, 
$)x/y/zM(/y,/z)∈%�:/y/z∈ℱQ+ �!-(
�, 
$)~/y/z + !/y/z¦. (30) 

In equation (30), we use x/y/z instead of e~(
$) to eliminate double-counting in the case that flights 
� and 


$ are both canceled.  Using !/y/z in place of !(
$) eliminates double-counting associated with delays on 

the second flight in the itinerary. 

The overall objective function equals the sum of the three cost components:  ��*�(.),  ���(.), and  ����(.).  Outside of the estimated re-accommodation delays, which we specific as inputs, the objective 

function is parameterized by �, �,�, m, and �. 

2.4 Quasi-Compression 

When evaluating different allocation techniques, it is important to consider something like compression to 

ensure that the allocations that lead to a larger number of cancelations do not look worse due simply to 

the absence of schedule compression.  The challenge is that because of the nature of the 1-to-1 exchanges 

performed by the FAA, compression is defined only in the single-resource TFM setting.  Thus, to 

approximate the impact of compression in the multi-resource setting, we have developed an optimization-

based quasi-compression procedure.  The resulting schedule provides an approximate lower-bound on the 

resulting flight and passenger delays. 
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The goal of our quasi-compression model is to compress the multi-resource TFM schedule, ensuring that 

each flight receives no more delay than in the combined schedule and that flow balance is maintained for 

all airlines and aircraft types.  To attempt to distribute delay improvements fairly between flights, we 

extend the RBS-EP allocation model, determining the task ordering, §(�), based on the scheduled arrival 

times in the combined schedule.  We denote the set of canceled flights as ¨©, and these flights are 

excluded from the task orderings.  For each flight 
 ∉ ¨©, we denote its arrival time in the combined 

schedule as �∗(
).  To ensure that cancelations are maintained and that flight delays are not extended, we 

add the following constraints to the quasi-compression model: 

./|/|(RS�) = 0 ∀
 ∈ ¨©, and (31) 

./|/|�∗(/) = 1 ∀
 ∈ ℱ ∖ ¨©. (32) 

Additionally, for each of the 15 airline groups, we add constraints (17) and (18) to ensure that flow 

balance is maintained in the compressed model. 

2.5 Passenger Delay Calculation 

Given either the combined or compressed flight schedule, we can estimate passenger delays using the 

passenger delay calculator from (12).  One challenge is that because the allocated flight schedule 

corresponds to only a portion of a single day of operations, most disrupted passengers will be unable to be 

re-accommodated to their final destinations.  For these passengers, instead of defaulting to the maximum 

re-accommodation delay as described in the referenced paper, we use the disruption cost regression model 

described in (13) to estimate the delays associated with each disrupted itinerary.  If the estimate from the 

disruption delay model exceeds the maximum re-accommodation delay, only then do we default the 

passenger to the maximum re-accommodation delay. 

3 Scenario Construction 

The scenarios we develop in this chapter are similar to the ones developed in (10).  The most significant 

divergence is that we limit the flight schedules to the 20 carriers represented in the Airline Service 

Quality Performance (ASQP) 2007 data set.  In Section 3.1, we describe the process for generating the 

required data for each of these flights, and in Section 3.2 we describe how we compute the TFM program 

capacities.  In addition to flight schedules and TFM program capacities, our sequential evaluation 

procedure requires planned aircraft routings and booked passenger itineraries.  Thus, in Sections 3.3 and 

3.4, we describe how we generate each of these data sets respectively. 
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3.1 Flight Schedules 

To build the scenario flight schedule, we start with flight schedule data from Flight Schedule Monitor 

(FSM) (14) that corresponds to a single day of relatively clear weather operations –April 23
rd
, 2007.  We 

restrict the schedule to the FSM flights that are operated by an ASQP carrier on origin-destination 

segments that exist in the T-100 Domestic Segment (T-100) database.  This reduces the number of flights 

we consider from over 38,000 to just over 16,000. 

3.2 TFM Program Capacities 

To develop our capacity reduction scenarios, we start with 10 days of historical disruption scenarios.  As 

in (10), we create two capacity reduction levels for the conflicting GDP and AFP programs, one 

representing historical capacities and one representing hypothetical capacities as congestion en-route 

increases.  The specified resource capacities for each of the 20 capacity reduction scenarios (10 historical 

disruption days x 2 capacity reduction levels) correspond to the 38,000 flights.  When we restrict our 

attention to the smaller set of 16,000 flights, we need to adjust the capacities accordingly.  To do so, we 

perform a full schedule allocation and then calculate the scenario capacities based on the utilization of the 

16,000 flights.  For any time period during which a TFM program is not in effect, we consider resource 

capacities to be infinite. 

3.3 Aircraft Routings 

To describe a valid aircraft routing, a flight sequence � must satisfy the following requirements. 

1. The flight sequence must be connected, i.e., ��� ([�]«K�) = !"��([�]«) for all ¬, 

2. All flights in the sequence must be of the same aircraft type, i.e., �([�]�) = ⋯ = �X[�](�)Y, and 

3. The flight sequence must be consistent with the minimum aircraft turnaround time �, i.e., �([�]«K�, 1) ≥ �([�]«, |[�]«|) + � for all ¬. 

To determine the planned aircraft routings, we utilize the aircraft tail numbers.  If we had accurate tail 

numbers for each flight, we could estimate the planned aircraft routings by tracing tail numbers over the 

course of the day.  Unfortunately, the FSM flights do not include tail numbers, although we can determine 

tail numbers for most flights by joining against the ASQP database.  The tail number data in ASQP is 

sometimes inaccurate, so a sorted sequence of flights sharing the same tail number is occasionally invalid 

according to the requirements described above.  When we encounter inconsistencies, we split the invalid 

sequence up into its longest valid sub-sequences.  Last, to minimize the number of aircraft routings, we 

greedily extend valid flight sequences (treating flights without tail numbers as unit-length sequences) by 

appending the next flight sequence that maintains the validity of the original sequence.  Using this 
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procedure, we end up with 4002 aircraft routings for the 16,100 flights over the 12 hour FSM flight 

window (including all flights that arrive or depart in the window). 

3.4 Passenger Itineraries 

In (12), the authors developed a methodology for estimating historical passenger itineraries from 

aggregated demand data.  One challenge is that the itineraries developed are based on the flights in 

ASQP, which do not match the FSM flights exactly.  An additional complication is that the FSM flight 

schedules are based on actual flight times on the day of operations, whereas the ASQP-based itineraries 

are based on planned flight times.  To address these problems, we perform the following three steps based 

on the procedures outlined in the referenced paper. 

1. Generate potential itineraries based on the FSM flights; 

2. Estimate carrier-route demands for the day by aggregating the passengers allocated to the 

ASQP-based itineraries over the same time period; and 

3. Allocate carrier-route passengers to the matching FSM itineraries using the discrete choice 

allocation model and estimated parameters. 

This re-allocation process ensures that the passenger itineraries in our airline disruption response model 

are feasible in the planned schedule (e.g., one-stop itineraries must satisfy the minimum connection 

time).  In total, we allocate 1,151,718 passengers to the 16,100 flights.  Of the passengers, 36% are 

allocated to one-stop itineraries. 

To estimate the expected re-accommodation delay associated with disruption of each of these itineraries, 

we use the disruption cost regression model developed in (13).  To ensure that the expected delay 

associated with re-accommodation is strictly positive and reasonably bounded, we limit the range of the 

model so that estimated disruption costs are always between 2 hours and 24 hours (e.g., if the model 

predicts less than 2 hours, we treat the disruption cost as 2 hours).  For the airline disruption response 

model, we estimate that a passenger connection is missed if there is less than 15 minutes of connection 

time (i.e., 'min = 3). 

4 Results 

As described in Section 2.3.3, the objective function for the airline disruption response model is described 

by the following five parameters: �, �,�, m, and �: 

� < 0 = cost benefit per seat associated with flight cancelations; 0 < � < 1 = seating capacity scaling factor applied for operating costs; 
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� = linear operating cost threshold; m = exponential growth rate for piecewise linear operating costs; and � = length of each segment in the superlinear portion of the operating cost curve. 

In our testing, we use � = −6, corresponding to negative 30 minutes of passenger delays per seat (based 

on 5 minute time intervals).  Assuming average passenger delays of 6 hours for flight cancelations (a 

reasonable, low-end estimate), this parameter value suggests that all else being equal an airline would like 

to cancel a flight that is less than 1/12
th
 full.  In the airline disruption model, all else is not equal, because 

single flight cancelations are impossible due to the flow balance constraints.  Nonetheless, this seems like 

a subjectively reasonable threshold. 

For the superlinear operating cost function, we consider two sets of parameter values, (� = 0.5, � = 6, m = 1.5, and � = 3) and (� = 0.5, � = 12, m = 1.25, and � = 3).  The first suggests that flight operating 

costs grow linearly for up to 30 minutes of delay, before growing by a rate that increases exponentially by 

a factor of 1.5 every 15 minutes.  The second suggests that flight operating costs grow linearly for up to 

an hour of delay, before growing by a rate that increases exponentially by a factor of 1.25 every 15 

minutes.  In each, the flight delay costs are scaled by 0.5 suggesting that baseline delay for an empty seat 

is half as costly as for a passenger.  When referencing the two operating cost curves in our results, we 

refer to the first curve as aggressive and the second as conservative. 

To understand the sensitivity of the model to these parameters, we compare the total costs (i.e., 

cancelation benefit plus operating costs plus passenger delays), based on a flight with an average 81.2% 

load factor (passengers divided by seats) and an average 36.4% of connecting passengers (split evenly 

between first leg and second leg passengers).  Each of these values represents the empirical averages 

based on the planned passenger itineraries in our test scenarios.  Under the aggressive parameter set, the 

airline is indifferent towards canceling this hypothetical flight based on just less than 2 hours of flight 

delay.  For the conservative parameter set, the total cost exceeds the threshold of cancelation indifference 

at just less than 3 hours of flight delay. 

Between the 10 days of historical disruptions scenarios, the 2 scenario types (historical and hypothetical), 

and the two operating cost parameterizations, we consider 40 sequential evaluation scenarios in total.  We 

report the results for each scenario date averaged across the two parameter sets and the two scenario 

types; the conclusions drawn from the averaged results are the same as those drawn from each of the four 

individual segments. 
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4.1 Benefits of Optimization 

In (10), the authors suggested that there is a significant benefit to coordinating conflicting TFM programs 

(i.e., GDPs and AFPs) using an optimization-based approach.  The analysis looked at the equity and 

efficiency of competing allocation schemes including two multi-resource RBS scheduling approaches 

used in practice, referred to as precedence RBS and exemption RBS.  One limitation with that analysis is 

that the authors compared only allocated flight delays.  In practice, due to flight cancelations and swaps, 

realized flight delays can differ significantly from those allocated.  It is possible to conceive situations 

where one approach allocates fewer delays, but does so in a way that systematically leads to a worse 

result.  In this section, using our sequential evaluation procedure, we demonstrate that the benefits 

suggested in the paper, though slightly diminished, appear to be fairly robust even in the dynamic CDM 

environment.  We perform this analysis by comparing results from the exemption RBS allocation to the 

Ration-by-Schedule Exponential Penalty (RBS-EP) model at each stage in the evaluation procedure: 

allocated, combined, and compressed.  We use a constant m = 1.25 as the base for the exponential penalty 

in the RBS-EP model, allowing up to 60 minutes of delay beyond the maximum RBS delay threshold.  In 

the result tables, we refer to this as the RBS-EP model. 

In Table 2, we provide statistics regarding the allocated flight schedules.  The percentage of unfair delay 

is based on the time-order deviation metric developed in (10).   Of the 20 individual scenarios tested, the 

RBS-EP model is at least as fair according to time-order deviation in 19, with the 5/9/2007 hypothetical 

scenario being the lone exception.  In aggregate, the RBS-EP is significantly fairer, allocating 2.4% of 

unfair delay compared to 8.4% for exemption RBS, while reducing total flight delays by 11.6%. 
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Exemption RBS RBS-EP 

Scenario 

Date 

Avg Flt 

Delay 

% Unfair 

Delay 

% Delay 

Reduction 

% Unfair 

Delay 

5/2/2007 10.4 14.8% 14.6% 3.4% 

5/9/2007 7.4 1.4% 7.9% 1.7% 

6/19/2007 25.6 7.7% 13.8% 2.8% 

6/27/2007 28.4 4.2% 9.3% 1.8% 

6/28/2007 33.1 10.7% 16.2% 2.8% 

7/5/2007 12.3 8.3% 6.0% 0.8% 

7/16/2007 5.7 8.8% 10.8% 5.0% 

7/18/2007 23.5 15.8% 8.6% 2.8% 

7/27/2007 8.5 3.0% 11.6% 2.6% 

9/27/2007 11.4 6.9% 7.5% 1.3% 

Summary 19.0 8.4% 11.6% 2.4% 

Table 2: Comparison of allocated flight schedules 

To compare the combined airline schedules, we consider flight cancelations, flight delays, and estimated 

passenger delays.  From this stage on, we ignore fairness, because airlines are free to reschedule flight 

according to their own internal objectives.  To better understand how the initial allocation might impact 

these internal objectives, we list the sum of the objective values across each of the 15 airline disruption 

response models.  In Table 3, we perform these comparisons averaged across both parameter sets and 

scenario types. 

Exemption RBS RBS-EP (1.25, 60)  [% Reductions] 

Scenario 

Date 

# Cx 

Flights 

Avg Flt 

Delay 

Tot Pax 

Delay 

Objective 

Value 

# Cx 

Flights 

Avg Flt 

Delay 

Tot Pax 

Delay 

Objective 

Value 

5/2/2007 21.0 8.7 697,061 226,059 9.6% 10.8% 8.6% 16.6% 

5/9/2007 4.0 7.9 511,804 158,626 0.0% 7.2% 8.3% 7.6% 

6/19/2007 101.8 21.2 6,106,069 2,212,208 27.7% 7.0% 12.6% 11.9% 

6/27/2007 101.5 23.0 5,574,536 1,879,670 5.1% 9.4% 9.7% 10.4% 

6/28/2007 111.3 24.4 5,263,559 1,868,648 17.8% 8.5% 9.3% 10.0% 

7/5/2007 11.5 12.0 1,267,157 408,008 10.8% 5.4% 11.9% 12.1% 

7/16/2007 6.5 5.7 404,223 119,429 6.3% 9.0% 6.8% 9.1% 

7/18/2007 89.0 17.6 3,943,034 1,255,284 6.1% 3.0% 10.6% 10.2% 

7/27/2007 12.5 8.4 1,492,187 482,756 9.5% 11.0% 14.2% 14.6% 

9/27/2007 28.0 9.6 1,741,369 594,579 6.1% 5.1% 6.4% 8.4% 

Summary 487.0 15.5 27,000,999 9,205,267 13.5% 7.4% 10.5% 10.9% 

Table 3: Comparison of combined schedules 
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In the table, we see that the RBS-EP model exhibits across the board improvements as compared to the 

exemption RBS scheduling approach.  The improvement in total objective values equals 10.9%.  If we 

treat this as a proxy for total costs, the percentage improvement is slightly smaller than the delay 

reduction indicated in Table 2 (11.6%), though still substantial.  Though fewer flights are canceled using 

the conservative cost curve (2.1% of TFM-impacted flights), the cancelation rate using the aggressive cost 

curve (3.3% of TFM-impacted flights) is also well within historical norms.  For instance, the average 

cancelation rate across all ASQP flights in 2007 was 2.4%, which includes many flights not impacted by 

TFM programs. 

One thing to note is that the RBS-EP model balances relatively smaller improvements in flight delays 

against larger improvements in flight cancelations.  The difference in cancelation rates between the 

exemption RBS and RBS-EP allocations suggests the importance of considering schedule compression, 

because each cancelation creates an opportunity for further delay reduction.  This intuition is borne out by 

the results in Table 4, which show that after quasi-compression, average flight delays have decreased by a 

relatively larger amount based on the exemption RBS allocation (i.e., the percentage reduction when 

comparing average flight delays for exemption RBS and RBS-EP has decreased). 

Exemption RBS 
RBS-EP (1.25, 60) 

[% Reductions] 

Scenario 

Date 

Avg Flt 

Delay 

Tot Pax 

Delay 

Avg Flt 

Delay 

Tot Pax 

Delay 

5/2/2007 8.1 671,695 5.7% 5.4% 

5/9/2007 7.8 517,493 7.0% 8.9% 

6/19/2007 19.2 5,764,674 0.8% 8.5% 

6/27/2007 20.7 5,413,536 5.9% 6.9% 

6/28/2007 21.0 5,007,257 -0.2% 4.2% 

7/5/2007 11.8 1,274,602 5.5% 11.7% 

7/16/2007 5.7 404,089 9.1% 6.7% 

7/18/2007 16.1 3,853,374 3.6% 9.6% 

7/27/2007 8.2 1,490,476 10.1% 14.0% 

9/27/2007 9.4 1,762,680 4.2% 5.9% 

Summary 14.2 26,159,875 3.6% 7.6% 

Table 4: Comparison of compressed schedules 

For the combined schedules, the improvement in passenger delays tracks closely the improvement in 

objective value (see Table 3), which is not surprising because passenger delays make up a significant 

component of the airline disruption response objective function.  Thus, when evaluating the compressed 

schedule, we consider passenger delay improvement as a proxy for overall cost reduction.   For the 
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compressed schedules, the average passenger delay improvement is 7.6%.  This values compare to the 

11.6% flight delay improvement calculated based on the initial allocation.  This suggests that a rather 

significant portion – perhaps as much as 30% – of the improvement reflected by a single-stage analysis is 

illusory.  Note that it is unlikely that the result is inflated by a full 30%, because the compression 

procedure utilized in practice is more restrictive than the quasi-compression we consider here.  

Nonetheless, the magnitude of the difference reinforces the importance of evaluating TFM allocation 

schemes in a CDM-like environment. 
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