5 research outputs found

    Deterministic Weighted Automata under Partial Observability

    Full text link
    Weighted automata is a basic tool for specification in quantitative verification, which allows to express quantitative features of analysed systems such as resource consumption. Quantitative specification can be assisted by automata learning as there are classic results on Angluin-style learning of weighted automata. The existing work assumes perfect information about the values returned by the target weighted automaton. In assisted synthesis of a quantitative specification, knowledge of the exact values is a strong assumption and may be infeasible. In our work, we address this issue by introducing a new framework of partially-observable deterministic weighted automata, in which weighted automata return intervals containing the computed values of words instead of the exact values. We study the basic properties of this framework with the particular focus on the challenges o

    Verification of Multi-Agent Properties in Electronic Voting: A Case Study

    Full text link
    Formal verification of multi-agent systems is hard, both theoretically and in practice. In particular, studies that use a single verification technique typically show limited efficiency, and allow to verify only toy examples. Here, we propose some new techniques and combine them with several recently developed ones to see what progress can be achieved for a real-life scenario. Namely, we use fixpoint approximation, domination-based strategy search, partial order reduction, and parallelization to verify heterogeneous scalable models of the Selene e-voting protocol. The experimental results show that the combination allows to verify requirements for much more sophisticated models than previously

    Coalition logic with individual, distributed and common knowledge

    Get PDF
    Coalition logic is currently one of the most popular logics for multi-agent systems. While logics combining coalitional and epistemic operators have received considerable attention, completeness results for epistemic extensions of coalition logic have so far been missing. In this paper we provide several such results and proofs.We prove completeness for epistemic coalition logic with common knowledge, with distributed knowledge, and with both common and distributed knowledge, respectively. Furthermore, we completely characterise the complexity of the satisfiability problem for each of the three logics. We also study logics with interaction axioms connecting coalitional ability and knowledge

    Epistemic ATL with Perfect Recall, Past and Strategy Contexts

    No full text
    International audienceno abstrac
    corecore