4 research outputs found

    On unifying sparsity and geometry for image-based 3D scene representation

    Get PDF
    Demand has emerged for next generation visual technologies that go beyond conventional 2D imaging. Such technologies should capture and communicate all perceptually relevant three-dimensional information about an environment to a distant observer, providing a satisfying, immersive experience. Camera networks offer a low cost solution to the acquisition of 3D visual information, by capturing multi-view images from different viewpoints. However, the camera's representation of the data is not ideal for common tasks such as data compression or 3D scene analysis, as it does not make the 3D scene geometry explicit. Image-based scene representations fundamentally require a multi-view image model that facilitates extraction of underlying geometrical relationships between the cameras and scene components. Developing new, efficient multi-view image models is thus one of the major challenges in image-based 3D scene representation methods. This dissertation focuses on defining and exploiting a new method for multi-view image representation, from which the 3D geometry information is easily extractable, and which is additionally highly compressible. The method is based on sparse image representation using an overcomplete dictionary of geometric features, where a single image is represented as a linear combination of few fundamental image structure features (edges for example). We construct the dictionary by applying a unitary operator to an analytic function, which introduces a composition of geometric transforms (translations, rotation and anisotropic scaling) to that function. The advantage of this approach is that the features across multiple views can be related with a single composition of transforms. We then establish a connection between image components and scene geometry by defining the transforms that satisfy the multi-view geometry constraint, and obtain a new geometric multi-view correlation model. We first address the construction of dictionaries for images acquired by omnidirectional cameras, which are particularly convenient for scene representation due to their wide field of view. Since most omnidirectional images can be uniquely mapped to spherical images, we form a dictionary by applying motions on the sphere, rotations, and anisotropic scaling to a function that lives on the sphere. We have used this dictionary and a sparse approximation algorithm, Matching Pursuit, for compression of omnidirectional images, and additionally for coding 3D objects represented as spherical signals. Both methods offer better rate-distortion performance than state of the art schemes at low bit rates. The novel multi-view representation method and the dictionary on the sphere are then exploited for the design of a distributed coding method for multi-view omnidirectional images. In a distributed scenario, cameras compress acquired images without communicating with each other. Using a reliable model of correlation between views, distributed coding can achieve higher compression ratios than independent compression of each image. However, the lack of a proper model has been an obstacle for distributed coding in camera networks for many years. We propose to use our geometric correlation model for distributed multi-view image coding with side information. The encoder employs a coset coding strategy, developed by dictionary partitioning based on atom shape similarity and multi-view geometry constraints. Our method results in significant rate savings compared to independent coding. An additional contribution of the proposed correlation model is that it gives information about the scene geometry, leading to a new camera pose estimation method using an extremely small amount of data from each camera. Finally, we develop a method for learning stereo visual dictionaries based on the new multi-view image model. Although dictionary learning for still images has received a lot of attention recently, dictionary learning for stereo images has been investigated only sparingly. Our method maximizes the likelihood that a set of natural stereo images is efficiently represented with selected stereo dictionaries, where the multi-view geometry constraint is included in the probabilistic modeling. Experimental results demonstrate that including the geometric constraints in learning leads to stereo dictionaries that give both better distributed stereo matching and approximation properties than randomly selected dictionaries. We show that learning dictionaries for optimal scene representation based on the novel correlation model improves the camera pose estimation and that it can be beneficial for distributed coding

    Distributed Video Coding for Multiview and Video-plus-depth Coding

    Get PDF

    Selected topics on distributed video coding

    Get PDF
    Distributed Video Coding (DVC) is a new paradigm for video compression based on the information theoretical results of Slepian and Wolf (SW), and Wyner and Ziv (WZ). While conventional coding has a rigid complexity allocation as most of the complex tasks are performed at the encoder side, DVC enables a flexible complexity allocation between the encoder and the decoder. The most novel and interesting case is low complexity encoding and complex decoding, which is the opposite of conventional coding. While the latter is suitable for applications where the cost of the decoder is more critical than the encoder's one, DVC opens the door for a new range of applications where low complexity encoding is required and the decoder's complexity is not critical. This is interesting with the deployment of small and battery-powered multimedia mobile devices all around in our daily life. Further, since DVC operates as a reversed-complexity scheme when compared to conventional coding, DVC also enables the interesting scenario of low complexity encoding and decoding between two ends by transcoding between DVC and conventional coding. More specifically, low complexity encoding is possible by DVC at one end. Then, the resulting stream is decoded and conventionally re-encoded to enable low complexity decoding at the other end. Multiview video is attractive for a wide range of applications such as free viewpoint television, which is a system that allows viewing the scene from a viewpoint chosen by the viewer. Moreover, multiview can be beneficial for monitoring purposes in video surveillance. The increased use of multiview video systems is mainly due to the improvements in video technology and the reduced cost of cameras. While a multiview conventional codec will try to exploit the correlation among the different cameras at the encoder side, DVC allows for separate encoding of correlated video sources. Therefore, DVC requires no communication between the cameras in a multiview scenario. This is an advantage since communication is time consuming (i.e. more delay) and requires complex networking. Another appealing feature of DVC is the fact that it is based on a statistical framework. Moreover, DVC behaves as a natural joint source-channel coding solution. This results in an improved error resilience performance when compared to conventional coding. Further, DVC-based scalable codecs do not require a deterministic knowledge of the lower layers. In other words, the enhancement layers are completely independent from the base layer codec. This is called the codec-independent scalability feature, which offers a high flexibility in the way the various layers are distributed in a network. This thesis addresses the following topics: First, the theoretical foundations of DVC as well as the practical DVC scheme used in this research are presented. The potential applications for DVC are also outlined. DVC-based schemes use conventional coding to compress parts of the data, while the rest is compressed in a distributed fashion. Thus, different conventional codecs are studied in this research as they are compared in terms of compression efficiency for a rich set of sequences. This includes fine tuning the compression parameters such that the best performance is achieved for each codec. Further, DVC tools for improved Side Information (SI) and Error Concealment (EC) are introduced for monoview DVC using a partially decoded frame. The improved SI results in a significant gain in reconstruction quality for video with high activity and motion. This is done by re-estimating the erroneous motion vectors using the partially decoded frame to improve the SI quality. The latter is then used to enhance the reconstruction of the finally decoded frame. Further, the introduced spatio-temporal EC improves the quality of decoded video in the case of erroneously received packets, outperforming both spatial and temporal EC. Moreover, it also outperforms error-concealed conventional coding in different modes. Then, multiview DVC is studied in terms of SI generation, which differentiates it from the monoview case. More specifically, different multiview prediction techniques for SI generation are described and compared in terms of prediction quality, complexity and compression efficiency. Further, a technique for iterative multiview SI is introduced, where the final SI is used in an enhanced reconstruction process. The iterative SI outperforms the other SI generation techniques, especially for high motion video content. Finally, fusion techniques of temporal and inter-view side informations are introduced as well, which improves the performance of multiview DVC over monoview coding. DVC is also used to enable scalability for image and video coding. Since DVC is based on a statistical framework, the base and enhancement layers are completely independent, which is an interesting property called codec-independent scalability. Moreover, the introduced DVC scalable schemes show a good robustness to errors as the quality of decoded video steadily decreases with error rate increase. On the other hand, conventional coding exhibits a cliff effect as the performance drops dramatically after a certain error rate value. Further, the issue of privacy protection is addressed for DVC by transform domain scrambling, which is used to alter regions of interest in video such that the scene is still understood and privacy is preserved as well. The proposed scrambling techniques are shown to provide a good level of security without impairing the performance of the DVC scheme when compared to the one without scrambling. This is particularly attractive for video surveillance scenarios, which is one of the most promising applications for DVC. Finally, a practical DVC demonstrator built during this research is described, where the main requirements as well as the observed limitations are presented. Furthermore, it is defined in a setup being as close as possible to a complete real application scenario. This shows that it is actually possible to implement a complete end-to-end practical DVC system relying only on realistic assumptions. Even though DVC is inferior in terms of compression efficiency to the state of the art conventional coding for the moment, strengths of DVC reside in its good error resilience properties and the codec-independent scalability feature. Therefore, DVC offers promising possibilities for video compression with transmission over error-prone environments requirement as it significantly outperforms conventional coding in this case
    corecore