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préparée au centre de recherche de
Inria Rennes-Bretagne Atlantique

Visual data
compression:

beyond conventional

approaches

soutenue à Rennes
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“Je voudrais être un arbre, boire à l’eau des orages
Pour nourrir la terre, être ami des oiseaux
Et puis avoir la tête si haut dans les nuages
Pour qu’aucun homme ne puisse y planter un drapeau”
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Chapter 1

Introduction

1.1 Basics of visual data compression

Despite the great disparity between the visual data formats, the coding/decoding pipeline
adopted for their compression generally follows the same architecture (depicted in Figure
1.1). In a nutshell, the T consecutive input images It are generally split into blocks. Each
block xk is first predicted, with a prediction function f taking as inputs some previously
encoded/decoded blocks {x̃l}l<k. The residue zk = xk − f({x̃l}l<k) is then transformed
and quantized. An entropy coder is finally used to build a compact bitstream bk. Let us
now explain role of each of these steps and the motivation behind them.

Prediction

+
+ -

Transform Quantization Entropy Coder

Entropy Decoder +
+

Transform-1

Transform-1

Block 

Scheduler

Block 
Scheduler

Prediction

ENCODER

DECODER

+

+
+

+

Figure 1.1: Structure of a conventional video encoder/decoder. The performance are
measured by both the rate R =

∑
k |bk| and the distortion D =

∑
k ||xk − x̃k||22.

1.1.1 Block scheduler

The block scheduler consists in spatially dividing the input image/video into smaller en-
tities called blocks. As depicted in Figure 1.2, the blocks can be 2D squares/rectangles
for regular images or videos, 2D curved patches for omnidirectional images or videos or
even 3D cubes for meshes. Performing such a spatial domain partitioning is justified by
two main reasons: complexity and non-stationarity of the color signal.

The most obvious reason for patching the visual data is that the processing can be sub-
divided into smaller tasks. Indeed, compression tools such as prediction and transform

9



10 CHAPTER 1. INTRODUCTION

Figure 1.2: Depending on the visual data format, the blocks can have different shapes.
They can delimit 2D or 3D areas. The can have a constant or optimized size.

can be very complex, and they usually scale with the signal’s dimension. On top of lim-
iting the complexity expense, defining fixed or predefined patch size (typically 8 × 8 to
64 × 64 pixels for 2D images/videos) enables to implement the compression tools (such
as transform or quantization) once for all and in an optimal manner in the hardware.
Thus when dealing with multiple visual data resolutions, the same optimized tool can be
applied by just adapting the number of patches.

Even though complexity is an important justification for a blockwise processing of the
visual data, the most important reason is the non-stationarity of the color signal. In a
nutshell, compression tools aim at tracking the signal redundancies and remove them.
Since, pixels are usually correlated with their close neighborhood, tracking the redun-
dancy should naturally be a local operation, i.e., within a patch.

In the recent 2D video standards, this block splitting is a key element for achieving
huge coding gains [1]. Powerful optimizations are run such that the size of each block
suits exactly the local statistics of the image.

1.1.2 Prediction

Even though pixels are usually more correlated with their direct neighborhood, longer-
term correlations exist and cannot be removed if only intra-block operations are performed.
Prediction step tackles this issues by simply constructing an estimation of a block xk based
on other decoded blocks {x̃l}l<k.

A first category of prediction function f models the motion and spatially displaces the
image’s content accordingly. In that case, the {x̃l}l<k belong to a previous frame It′ with
t′ < t. The function f consists in copying one patch belonging to the previous frame (i.e.,
f(xk) ∈

⋃
l<k x̃l). The position of this patch is signaled to the decoder.

A second category of prediction function f performs texture extrapolation by prop-
agating the information belonging to the already decoded neighbor information into xk
through an optimal direction. This direction is transmitted to the decoder.

Alternative prediction tools exist, for example those dealing with the recent advances
in deep learning [2, 3]. They still take as input the pastly decoded blocks {x̃l}l<k and
produces a prediction of xk.
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1.1.3 Transform

The transform operation is nothing else than an orthonormal basis change that enables to
i) decorrelate the signal and ii) to compact the energy in a small number of coefficients.
Thanks to i) and ii), coding the signal in the transformed domain is more efficient than
in the spatial domain. The signal to transform is the residue zk. If no prediction is done,
then zk = xk.

i) Decorrelate the signal: the signal zk can be seen as a vector of N random variables Zi,
that are correlated with each other. For the sake of clarity, let us assume for the moment
that one has to code this vector losslessly. The minimum achievable transmission rate is
the joint entropyH(Z1, . . . , ZN ) (in the sense of Shannon entropy [4]). However, this rate
is difficult to achieve in practice because the joint probability distribution of (Z1, . . . , ZN ) is
not straightforwardly obtainable. Let us now assume that the signal has been transformed
to another random vector set (Z ′1, . . . , Z ′N ) thanks to an orthogonal basis change. The
achievable rate remains the same, i.e., H(Z ′1, . . . , Z

′
N ) = H(Z1, . . . , ZN ). However, if the

variable decorrelation is achieved, we have that H(Z ′1, . . . , Z
′
N ) = H(Z ′1) + . . . +H(Z ′N ),

which means that each variable can be coded separately without any rate increase. In that
case the joint probability distribution is not needed, and the optimal rate becomes easily
achievable in practice, just requiring each of the Z ′i distributions.

ii) Compact the energy: another interest of the transform is to compact the energy in
a small number of coefficients. Since the transform is orthonormal, then the amount of
signal energy is the same in both signal and transform domains according to Parseval’s
theorem. While, in the original domain, the energy in the signal tends to be distributed
relatively evenly over the nodes, with a compact representation (i.e., compact transform),
the frequency coefficients do not contain the same amount of energy as illustrated in Fig-
ure 1.3. In other words, some coefficients are more representative of the signal and have
to be coded with a greater precision. On the contrary, some coefficients are less represen-
tative and can be coded coarsely or even can be withdrawn without a great impact on the
decoded signal quality, but with a significant bitrate decrease. This is controlled by the
quantization as we will explain in the next paragraph. It is important that the energy is
contained in the low frequencies (e.g., power-law decay as in the general case) or other-
wise known law, which may lead to a good model (e.g., zerotree [5]). The exact indices
may not be exactly known in advance but still coded efficiently using SPIHT [6] or similar.

0 100
0

100

% of coefficients

%
 o

f 
e
ne

rg
y

Not Compact re
presentation

Compact re
presentation

Figure 1.3: Behavior of a compact and a not compact representation.

Finding the optimal transform is possible when the data’s covariance matrix Σ is known.
In that case, the transform basis, called the Karhunen-Loeve Transform (KLT), is chosen
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such that it diagonalizes Σ [7]. This approach is however almost never used in compres-
sion because i) Σ has to be known and ii) the transform basis has to be transmitted to.
In practical coder, hand-crafted transform are used such as the popular Discrete Cosine
Transform (DCT) that can be designed for signals of every dimension (e.g., [8], 2D [9],
3D [10], 4D [11]).

1.1.4 Quantization

As explained before, the output of the signal transform stage is a set of transform coef-
ficients. They are most of the time decorrelated. Also, a large proportion of the total
signal energy is contained in a handful of coefficients. From a compression perspective,
the transform coefficients cannot be sent as they are. The number of bits needed to repre-
sent float or double values (with high precision) can easily explode, without necessarily
improving the signal reconstruction quality. Therefore, restrictions on the number of bits
used to represent those coefficients is necessary. This is usually done by a scaling and
rounding procedure, what we call a scalar uniform quantization:

α̃ = Q× round(
α

Q
). (1.1)

Depending on the quantization step size Q, the transform coefficients are rounded
to the nearest multiple of Q. With such procedure, the precision of the sent transform
coefficients α̃ can be varied and the reconstruction quality (i.e., the distortion of the signal
reconstructed) is impacted.

Different ways exist to define Q. The easiest way is to choose one fixed quantization
step for all coefficients. However, since the energy is concentrated in the first coefficients,
standards have decided to group coefficients with respect to their energy (equivalent to
grouping random variables with a similar distribution), and thus define differentQ values
per group of coefficients. For example, for the coding of 2D images, matrices of quantiza-
tion steps are usually precoded and scaled to vary the bitrate [12, 13].

1.1.5 Entropy coder

In all compression schemes, the quantized coefficients are further compressed in a lossless
manner, thanks to entropy coding. This enables to exploit the probability distribution to
decrease the number of bits needed to code the quantized values. This entropy coding
can be done using, simple coders (e.g., arithmetic [14], Huffman [15]) or more evolved
ones (e.g., CABAC [16, 17]).

1.2 Raising of new modalities

In the recent years, in parallel of the development of more and more powerful compression
tools, new types of image modalities have emerged. Most of them were developed in the
context of immersive experience such as virtual/augmented reality, 6 degree-of-freedom
(6-DoF) visualization. These images tend to represent the 3D world and are therefore
referred to as 3D images [18]. It implies that the dimension of the images captured with
such devices is huge, and requires efficient compression algorithms.
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1.2.1 3D image definition

3D images are classically defined in opposition to 2D images. Indeed, by “2D images”, we
usually denote the images acquired with a traditional pinhole camera under a perspective
projection model, i.e., everyday-life camera. By “3D” we usually consider all what is not
“2D”, hence including many types of capturing devices. The word “3D” is general and
does not always mean that the image is defined in an R3 topology. However, it always re-
flects the fact that an extra information (implicit or explicit) exists and can be used to assist
the image processing task. This information corresponds to the scene geometry, called γ
in the following. We now review the most common types of 3D images from the most
explicit to the most implicit geometry.

1.2.2 Point clouds and meshes

A point cloud refers to a set of data points in space (Figure 1.4). Each point is defined
by a 3D coordinate and a color value. Point clouds are usually captured with one or sev-
eral laser device(s) (such as lidar, time-of-flight cameras) coupled with classical image
camera(s). They are used when remote visualization is desired (medical imaging, virtual
tour, virtual reality, etc.). For realistic rendering, a high number of points is used (sev-
eral millions), increasing the need for efficient compression algorithms. Point clouds are
sometimes converted to polygon or triangular meshes, in which a mesh topology is added
which describes the connectivity between 3D points. The color information can be repre-
sented in a huge color vector [19, 20] or texture maps [21] that are 2D projection of the 3D
object. They enable the use of traditional coding tools. Both point clouds and 3D meshes
can be static or dynamic. In case of dynamic content (sequence of frames), the number of
points and the topology may vary between frames. The geometry of a point cloud is said
explicit since it directly corresponds to the set of 3D coordinates. The compression of this
geometry data is based on decorrelation’s principle to eliminate the statistical redundancy.

The compression of 3D mesh geometry has been widely studied. A survey of such
methods can be found in [22, 23]. In general, static mesh compression approaches are
divided into three categories: single-rate algorithms try to build a compact representation
of an input mesh. In progressive algorithms, as in [24, 25, 26], the input mesh is iteratively
decimated until a base mesh is generated. This provides successive levels of details for the
input mesh in which a coarse version of the mesh can be quickly displayed to the user and
this coarse mesh is progressively refined as more data are decoded. Random-accessible
algorithms like [27] allow decompressing only the required parts of the mesh to avoid the
need to load and decompress the full model.

In contrast with 3D meshes, the lack of connectivity information in point clouds is the
main difficulty to overcome [28]. In this case, various types of tree-based representations
are considered to process geometry information, including octrees [29], binary trees [30]
and kd-trees [31]. Different approaches are used to compress the geometry, including
methods to decompose the mesh into Levels of Details [32, 33], clustering methods [34]
and transform-based techniques [35]. A survey regarding the compression of point clouds
is provided in [36]. The approaches used to decorrelate the point cloud data are classified
into three main families: 1) 1D traversal compression techniques that provide 1D predic-
tion using tree-based connectivity induced by the native geometric distances between the
points in the cloud [33]. 2) 2D projection-based methods map the 3D point cloud into
2D images/videos and then use existing image/video coding techniques to compress the
data [32]. 3) 3D decorrelation techniques directly exploit the 3D correlation [35].
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Figure 1.4: Example of a 3D point cloud: Stanford Bunny.

Figure 1.5: Example of omnidirectional image: Sopha [37]
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1.2.3 Omnidirectional images

Omnidirectional images, also called 360◦ images, describe the visual information coming
from every direction and converging to a point (the camera center). They can also be seen
as spherical images, in which pixels are lying on a unitary sphere, and their position on
the sphere corresponds to a light ray direction. Here, the geometry is still explicit since it
corresponds to the position on the sphere. It is however of only 2 dimensions (longitude
and latitude), being only able to position the color point on a line (rather than at an exact
3D position for a point cloud).

Omnidirectional images are generally mapped to 2D images to enable traditional im-
age compression (Figure 1.5). Different mappings exist: equirectangular [38], cube map
[39], rhombic dodecahedron [40], Dyadic [41], etc. Each of them presents certain draw-
backs such as not non-uniform pixel’s distribution on the sphere, connectivity loss be-
tween the difference mapping surfaces.

1.2.4 Light field images

Light Fields represent light rays emitted by every point in a scene and along different
orientations [42]. It is described by the plenoptic function L(x, y, z, θ, φ, λ, t), where x, y
and z are the 3D coordinates, θ and φ are the direction angles, λ is the light frequency
and t is the time instant. A light field camera, also known as plenoptic camera, is able to
capture for a given position: i) the light color and ii) the light direction, contrary to regular
cameras that only capture the light color. In other words, light field cameras provide a
finer sampling of the plenoptic function. This has been made possible, for example, by
placing a 2D array of micro-lenses in front of the photo-receptor. The image captured
by the 2D sensor (called lenslet-based plenoptic image), is in fact seen as a 4D table of
pixels where two dimensions correspond to the pixel position, and two correspond to the
ray angle (Figure 1.6). The scene geometry information is, this time, implicit and can be
retrieved and estimated from the plenoptic image content.

Estimating this geometry always relies on the motion parallax effect: when switching
from one view to another, an object “moves” (i.e., it is not at the same position in the im-
ages), and the way it moves is directly linked to its depth (i.e., its distance to the cameras).
More precisely, the closer the object, the faster it moves between the different images. The
whole point of geometry estimation is to estimate this motion, called disparity, in order to
retrieve the scene depth.

Having very narrow baselines (distance between the views), lenslet-based plenoptic
images could not be efficiently used in stereo matching techniques as they usually in-
volve interpolation with blurriness due to sub-pixel shifts in the spatial domain. There-
fore, research has been devoted to find different constraints and cues for estimating the
depth. One way is to compute cross-correlation between microlens images to estimate the
disparity map [43]. Other approaches rely on structure tensors to estimate vertical and
horizontal slopes in epipolar images [44]. Alleviating some ambiguities and difficulties
encountered due to occlusions and large displacements, researchers have combined dif-
ferent cues like defocus and correspondence in [45], with occlusion handling [46]. More
recently, learning-based methods are proposed [47, 48, 49] and show significant improve-
ment when a sufficient amount of data is available for learning. Once a disparity map or
a depth map is estimated, this geometry information needs to be compressed and trans-
mitted. If a dense disparity map is needed, then it can be compressed using traditional
image coding methods with adapted criterion [50, 51]. If only a sparse set of disparity or
depth values are needed, they can be coded using arithmetic coding techniques.
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Raw lenslet image Sub-aperture images

Figure 1.6: Example of Light field image: Succulents [52]

1.2.5 Stereo / multi-view images

Multi-view imaging refers to a synchronous capture of a scene taken from different angles.
A particular example is the stereo capture where two points of view are captured mim-
icking the human visual system, usually for rendering a 3D impression at the user’s side.
Other systems such as super multi-view exist [53]. Since the captures are usually done
with perspective cameras, no geometry information is available. However, exploiting the
information from multiple points of view enables to retrieve it, again thanks to the mo-
tion parallax effect. Some other nice properties of the perspective projection, such as the
so-called epipolar geometry, can be used to relate disparity and depth. Therefore, from
multiple synchronous captures of a scene, the depth, and thus the 3D points position can
be retrieved. This is why multi-view imaging is considered as “3D”, the geometry being
implicit and deduced from the pixel redundancies across views.

Geometry estimation and compression is close in spirit to the ones for light-field.
However, with larger baselines (distance between the views), stereo matching techniques
[54, 55, 56] are mostly used to estimate the geometry i.e. disparity. Those approaches can
be broadly classified into two categories: the intensity-based matching and the feature-
based matching techniques. Learning based approaches for deep stereo matching and
depth estimation have also been proposed, (e.g., StereoNet in [57, 58]).

1.3 Limitations

With the advent of the aforementioned images modalities, some major problems arise.
First their size explodes, and this revolutionizes the way they are consumed. Second,
they mostly rely on topologies that are irregular. We describe here, how such evolutions
make the use of conventional compression suboptimal or even impossible.

Random Access - Given the new nature of the signals (omnidirectional, 3D, etc.) or
their huge size, users are not anymore willing to watch (hence to receive) the entire image
at once. While classical 2D images describe a single viewpoint, 3D images represent many
of them, and a user cannot access all of them at the same time. This simple statement
brings several major changes: first, a user should be given the possibility of interactively
choose his/her viewpoint. Second, the coding scheme should be able to send only what
is needed to the users, in order to save bandwidth. However, since no live re-encoding is
conceivable in practice, the encoder should encode the image blindly to the user’s request.
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Figure 1.7: Limitations of conventional coding architecture.

This is why interactivity is also called random access. This randomness is precisely what
makes the conventional compression approach suboptimal. As depicted in Figure 1.7, the
predictive approach relies on prediction and residue and thus imposes that the coding order
is the same at the encoder and the decoder. Unfortunately, the set of blocks requested by
a user does not necessarily contain all the blocks in the predefined order. As a results, it
is more likely that a significant number of non-displayed blocks have to be transmitted,
which makes the conventional approach far from optimal.

Irregular topologies - Instead of the 2D cartesian grid used for classical image, the 3D
data relies on sphere, arbitrary shaped surfaces, arbitrary shaped 4D volumes etc. None
of these domains of definition is euclidean, which makes the usage of traditional signal
processing tools impossible. In the conventional coding architecture, the transform is not
defined anymore (see Figure 1.7). Indeed, the usual transforms adopted by conventional
coders (such as DCT, Fourier Transform, Wavelets, etc.) are only defined on euclidean
space.

1.4 Contributions

The work presented in this manuscript aims at tackling the two aforementioned issues.
F In Chapter 2, we present solutions to perform image compression under random ac-
cess. We first investigate how to segment the input data such that less useless information
is transmitted while maintaining good compression performance. We then derive the op-
timal coding performance that can be expected from the theoretical point of view. We
show, in particular, that the widely used segmentation-based approach is not optimal.
Finally, inspired by such intuitions, we develop a practical solution aiming at achieving
these optimal performance. We then build a practical coder for omnidirectional and 3D
mesh data. We demonstrate that it is possible to send only what is requested without any
loss of coding performance.
F In Chapter 3, we present how we have tackled the non-regular topologies. We describe
how the 3D data topology can be modeled with a graph. We then derive practical cod-
ing solutions for different modalities such as light field, omnidirectional images and 3D
meshes. In a second time, we use this graph to describe the geometry information instead
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of, for example, depth maps. We show that such representation embed the necessary
“amount of geometry” for efficient compression.
F In Chapter 4, we focus on the construction of graph-based transforms. Playing an im-
portant role in the coding schemes investigated in Chapter 3, they are at the same time,
very complex, especially when the data resolution is increasing. We propose solutions
to decrease this computational complexity. First, we propose to optimally segment the
graph, enabling to reduce the transform calculation and at the same time to preserve the
smoothness of the signal on the graph (and thus good compression performances). In a
second time, we investigate how the graph-based transform can be designed such that it is
computed in a separable manner along “graph dimensions”. We arise problems of basis
misalignment that may occur and propose solution to tackle them. Finally, we use graph
coarsening techniques to represent the graph in a reduced dimension when the signal is
sufficiently smooth.



Chapter 2

Visual data compression with
random access at the user’s side

2.1 What is ”Compression with random access” ?

Compression with random access refers to the compression of data for which only a sub-
part is nedeed/desired at the decoder side (for visualization or processing). Typical ex-
amples of such data are visual data that cannot be watched entirely at a given time. Omni-
directional videos or 3D model (mesh or point clouds) fall into this category since, by na-
ture, they represent the light field from different possible viewpoints (Section 1.2). Other
examples are databases made of numerous items (e.g., signals captured by sensors, im-
ages or videos) that a given user may partly consume.

Figure 2.1: Compression with Random Access

The fact that i) the entire data must be represented and at the same time ii) only a part
of it may be consumed by a user makes the compression highly challenging and novel. A
first novelty is that it splits the traditional compression rate into two quantities:
• the storage rate, S, measuring the size of the file that is needed to represent the

whole data. This file is usually stored on a server.
• the transmission rate, R, measuring the amount of information that is needed for

the partial decoding at user’s side.

A second novelty is that the transmission rate depends on the user’s behavior and thus
requires a modeling of it to be defined. For that purpose, we define:
• the user’s request, V , as the subset of the data that is needed at user’s side. This can

be considered as a random variable with a set of realization V and distribution pV .
If R(V ) is the transmission rate measured for a given user’s request V , we can define the
transmission rate as:

R = EV∼pV [R(V )]. (2.1)

19
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A third novelty raises together with this new rate evaluation. Indeed, this two-headed
rate term implies a need for novel coding architecture. Naturally, a simple encoder-decoder
architecture is no longer meaningful. Moreover it is not conceivable to perform re-encoding
(after user’s request) because of obvious complexity issues. Therefore, we define the fol-
lowing coding architecture pipeline:
• the encoder that compresses the entire input data and stores it as a bitstream
• the online extractor that, upon a user’s request, extracts from the stored bitstream

what is necessary.
• the decoder that reconstructs the desired data from the extracted bitstream.

The global coding scheme for compression with Random Access is depicted in Figure 2.1.
The main challenges are the following:

F Model the user’s request V in order to estimate the transmission rate and to antici-
pate the user’s behavior at the encoding

F Design a Encoding-Extraction-Decoding strategy that optimizes the S and R rates.

2.2 Segment the input data for navigation

The traditional compression scheme introduced in Figure 1.1 imposes the prediction f to
be the same at the encoder and the decoder (because of the residue computation). A huge
consequence of that requirements is that the block scheduler should encode and decode the
blocks of a visual data with the same order. This is naturally not compatible with the random
access introduced in the previous section. As an illustrative example, if a user requests
one block, that is predicted from another one, the extractor must send these two blocks
to the decoder even though only one is required. In other words, the block scheduler
introduces a dependency chain that cannot be broken at the extraction.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 2.2: An omnidirectional image represented in equirectangular format and divided
into 15 tiles. As an example, when the user’s viewport corresponds to the red zone, the
tiles 1, 2, 6 and 7 are transmitted instead of the whole image.
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The historical way of tackling this drawback consists of segmenting the input data
into small indivisible entities. The most straightforward example is the concept of Group-
of-Pictures (GoP). It consists of a set of frames in a video that are coded together: one
intra frame and several frames predicted from it (see (J23)). More recent instances are
the tiles in omnidirectional videos [59, 60, 61]. Basically, the input omnidirectional image
(or video) is split into spatial blocks (see Figure 2.2). Each tile is encoded separately and
transmitted as soon as a subpart of it is requested by a user (i.e., his viewport lies on its
domain of definition). This enables to reduce the amount of useless (i.e., not watched)
pixels that are transmitted.

Na igation Domain

iewpoints

User's navigation trajectory

1D Navigation Domain 2D Navigation Domain

Figure 2.3: The navigation domain is a manifold included in R6, corresponding to the 6
degrees of freedom a user can play with during his navigation. The set of acquired views
(in red) corresponds to a discrete set included in this navigation domain.

2.2.1 Navigation domain partitioning

In (J3) and (J18), we have extended this concept to the navigation domain, i.e., the set of
viewpoints that could be synthesized to a user. Let us assume a free viewpoint viewing
(FVV) system where a user observes a scene from the viewpoint he desires. We define the
user’s viewpoint by the 6 parameters positioning the pinhole camera in the world domain:
three positions for the camera center (tx, ty and tz) and three angles (θx, θy and θz). The
navigation domain is thus the manifold included in R6 that contains all viewpoints that
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can be chosen by a user. The concept of navigation domain is illustrated in Figure 2.3 and
depends on the application.

+

Figure 2.4: The navigation domain is partitioned into navigation segments, and each navi-
gation segment is encoded and stored on a server. Users interact with the server to request
the navigation segments needed for the navigation.

We denote by X the navigation domain and byX a given viewpoint in X . We assume
that a probability density fonction P exists on X , where P (X) gives the probability of X
to be chosen by a user. We thus call P (X) the popularity of a viewpoint X . As mentioned
previously, we propose to partition X into navigation segments Xi, in order to make it suit-
able for an interactive compression (see Figure 2.4). The partition is chosen such that it
optimally minimizes the following criterion:

min
N,X1,...,XN

N∑
i=1

R(Xi) + λS(Xi), (2.2)

where S(Xi) is the storage cost of a navigation segment, R(Xi) is the expected rate for the
navigation segment and λ is a weighting factor balancing the importance of storage cost
compared to transmission one. More precisely, the expected rate can be expressed as:

R(Xi) =
(∫

X∈Xi

P (Xi)
)
S(Xi). (2.3)

We can see that the rate cost is equal to the storage cost (i.e., the total amount of bits needed
to describe a navigation segment) weighted by the popularity of the navigation segment.
When minimized, this rate term enforces the partition to advantage low storage costs (e.g.,
smaller segments) for more popular parts of the navigation domain.

2.2.2 Segment representation

In (C17, C18, C29, J3, J13), we propose to represent a navigation segment Xi with the two
following quantities:
• the color and depth information of a reference view (denoted by Yi), that is a well-

chosen point of view belonging to the navigation segment. All the viewpoints X
belonging to this navigation segment will be generated from Yi.
• an auxiliary information ϕi that is a light helper for the synthesis of the views in the

navigation segment.
The proposed representation is illustrated in Figure 2.5. Using view synthesis tools such
as Depth image based rendering (DIBR) techniques [62, 63, 64], the reference view is able to
synthesize a portion of each view of the navigation segment. This portion corresponds to
the regions of the 3D scene that is visible from the reference view. The remaining region
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Figure 2.5: Proposed representation of a navigation segment: a reference view and an
auxiliary information.

is called the disoccluded area and corresponds to the scene content that is hidden in the
reference view.

These holes in the synthesized views can be filled in using inpainting algorithms [65].
However, inpainting targets plausibility of the content rather than fidelity to an input signal
(since these algorithms are usually used when no ground-truth signal exists). The con-
sequence is that with classical inpainting solutions, the synthesized views look realistic,
but are most of the time significantly different from the original view. This can have huge
consequences on the visual quality (e.g., unconsistency over time or across the views).
This is the reason why we have proposed to send an auxiliary information to assist the in-
painting algorithm. More precisely it helps the inpainting to converge to a reconstruction
that is plausible and at the same time close to the input view. This auxiliary information is
not sent for every block to be filled in. In Figure 2.6, we show that the level of uncertainty
when inpainting a hole strongly depends on the content and the occlusion shape. The
auxiliary information should thus be designed in such a way that it guides the inpainting
only when necessary.

In order to build an auxiliary information, we have explored different solutions. In
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(a) groundtruth
patch 

(b) occluded patch 
good scenario

(c) occluded patch 
bad scenario

(need of a helper)

Color histogram 

?

?

Figure 2.6: Illustration of different incertainty levels when inpainting occluded blocks.
Completing the occluded patch in (b) is intuitive, while guessing that an orange region
exists only relying on the blue region in (c) is nearly impossible without an helper.

(C17,J3), the side information consists of DCT coefficients of some well-chosen blocks.
In (C18, J13), the side information is made of intra/inter mode values (i.e., the type of
mode and the prediction parameter). The choice of where to position this auxiliary infor-
mation in the image is made by solving a rate-distortion criterion. Finally, in (C29), we
build a texture dictionary made of all the patches of the known region (the non-occluded
one). We cluster this dictionary in sub-dictionaries. The auxiliary information is simply
the index of the cluster when this one cannot be deduced from the context when doing
inpainting. Said differently, the auxiliary information helps the inpainting to choose the
”mode” of the inpainting (i.e., the type of content) and let it fill in the disocclusion.

In (J8), we have alternatively proposed to describe the navigation segment Xi using a
Layered Depth Image. As explored in [66] for a different context, it consists in projecting all
views X ∈ Xi onto the reference image Yi (using DIBR). Naturally, some pixels of X are
already present in Yi and are removed to avoid redundancy. Other pixels can be hidden
in Yi (because of occlusion) and are represented in another layer. Some pixels are out of
the initial Yi boundary, and should be represented in an extended version of Yi. When all
pixels are projected, the resulting image is an extended layered depth image.

Whatever the solution adopted (auxiliary information or layered depth image), the
purpose is to represent compactly (without any redundancy) the information necessary
to synthesize any X ∈ Xi. The remaining question is how to decide the boundaries of the
different navigation segments ? This is tackled in the next section.

2.2.3 Optimal partitioning and results

In this Section, we explain how we have proposed to solve the problem formalized in (2.2),
when the navigation segments Xi are coded with one reference view Yi and an auxiliary
information ϕi. The rate of the reference view Yi is considered as constant, meaning that
coding a view costs approximately always the same rate and does not depend on the cho-
sen view. The rate of the auxiliary information is modeled as proportional to what we call
the innovation between one view and another. This innovation betweenX and Yi is the size
of the disoccluded region when predicting X from Yi (as in Figure 2.5), i.e., the number
of pixels of X that are occluded in Yi. This innovation can also be computed between one
reference view Yi and a set of views (for example the remaining views in the navigation
segment Xi \ Yi). In that case, the innovation is computed in the 3D world (number of
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disoccluded voxels instead of number of disoccluded pixels) and the disoccluded area is
the union of the disoccluded voxels corresponding to each view. This model is content
dependent in the sense that it does not only rely on the distance between cameras. We
see in Figure 2.7 that the rate of the auxiliary information is indeed proportional to the
innovation.
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Figure 2.7: Illustration of the evolution of the size of auxiliary information R(ϕi) as a
function of the number of voxels in the segment innovation. The auxiliary information is
coded with a DCT-based scheme with uniform quantization of the coefficients, where q
corresponds to the number of bits used to describe each DCT coefficient.

Based on the aforementioned model, the problem in (2.2) has been solved using an
extension of Lyold algorithm in (J3) or a Dijkstra algorithm in (J18). In Figure 2.8, we
show some typical results we have obtained. We can see that our approach that takes
into account the scene geometry obtains a better rate performance (for a same decoding
quality) than a solution only relying on the camera poses.
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Figure 2.8: Cumulative rate computation during a user’s navigation. Both navigation do-
main partitioning are compared: the initial one based on the camera distance only, and
the optimized one, for which our method is adopted to adapt the size of the navigation
segments to the scene content.
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2.3 What achievable performances ? How to reach them ?

While the segmentation introduced above takes into account the view popularity, and
thus the user’s request statistics, it cannot prevent that useless information has to be sent.
Indeed, a navigation segment is transmitted entirely even though some viewpoints in it
are never requested by users. In the following, we tackle the question: is it possible to
send only what is needed and thus to achieve the minimal rate, i.e., the one that we would
achieve without interactivity ? From what we can see in the literature, the answer is ”yes”,
but generally, the price to pay is a gigantic storage rate expense (i.e., anticipate all possible
requests at the encoder side). We thus propose to study this question from the theoretical
point of view: what are the minimum R and S that can be achieved ?

In order to answer this question, we introduce the coding scheme in Figure 2.9. It is
similar to the one in Figure 2.1, with some additional precisions. The data is explicitly
composed of a set of items that can be individually accessed: the signals xl generated
by L correlated sources denoted {Xl}1≤l≤L. After offline compression, the stored data is
composed of several separable bitstreams denoted by {bi}1≤i≤B . We express the storage
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Figure 2.9: Massive Random Access with a Navigation graph

cost S as the size of the bitstreams stored on the server:

S =
1

L

B∑
i=1

|bi|, (2.4)

where |.| denotes the sub-stream size expressed in number of bits, and where the normal-
ization factor L is in order to have a cost per source.

The user’s request v is a vector of source indices and is ruled by some restrictions
imposed by the application. In Sec. 2.3.1, we propose to model these restrictions with a
navigation graph. Based on this request, only some of the separable bitstreams are trans-
mitted to the decoder. Their index set is denoted by I(v). We thus define the per request
transmission cost as the cumulated size of the bitstreams sent to a client for a given request:

R(v) =
1

|v|
∑
i∈I(v)

|bi|, (2.5)

where the normalization leads to a per source criterion. Finally, to obtain a criterion that
does not depend on the client’s request, we assume that a probability distribution p over
the clients’ requests is available. This leads to the expected transmission cost:

R = Ev(R(v)) =
∑
v∈V

p(v)R(v). (2.6)

In Section 2.3.2, we derive the optimal values for S andR from the theoretical point of
view. We compare this optimal value with three baseline schemes of the literature. Finally,
in Section 2.3.3, we propose solutions able to reach these optimal storage and transmission
costs. For ease of presentation, we consider in the next two Sections a lossless compression
scheme. A lossy extension may be obtained, e.g., with a quantization of the input sources
[67].

2.3.1 Modeling Random Access by means of a navigation graph

Access to a database is usually proposed with some restrictions. For instance, in Free
Viewpoint Navigation or 6DoF systems, the client observes a scene by navigating from
one viewpoint to another. But, to offer a smooth client experience, the navigation might
be limited to neighboring viewpoints only.

Before showing how to integrate these restrictions, we first model a request as a vec-
tor of source indices. The navigation of the client is therefore equivalent to a request of
ordered source indices.

To describe the set of allowed requests to the database that may be performed by a
client, we introduce the oriented navigation graph G = (N , E). N is a set of L + 1 nodes
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(a) Navigation graph (b) Example of clients' navigation

Figure 2.10: A navigation graph and an example of client’s navigation. (a) The nodes
of the graph depicted by a circle represent the sources. The square node represents a
dummy source used for the initialization of the navigation. A directed edge exists between
node i and j if the source Xj can be requested once the source Xi has been previously
requested and stored in the clients’ memory. (b) In the example of navigation, the blue
nodes correspond to the requested sources, the red ones to the sources that are allowed
to be requested, and the faded red ones represent sources that can not be requested.

and E is a set of directed edges between these nodes. The nodes represent the L sources
plus a (dummy) sourceX0 used to initiate the navigation. A directed edge ej,i from node
j to node i indicates that the source Xi can be accessed by a client, once Xj has been pre-
viously requested and stored in the clients’ memory. The only source that may be directly
accessed, without having previously requested another source, is the (dummy) source
X0 which corresponds to node 0. To summarize, the graph G introduces the constraints
on the way sources may be accessed. The set of all possible requests consistent with G is
denoted by V .

2.3.2 Optimal achievable performance

In such conditions, several schemes have been investigated in the literature. In order to
express their achieved performance, we introduce the following notations ∀i ∈ [1, L],∀j ∈
[0, L]:

hi|j = H(Xni
i |X

nj

j ) and hi = H(Xni
i ), (2.7)

where ni and nj stand for the signal length of the sourcesXi andXj respectively,Xni
i de-

notes the random vector (Xi,1, Xi,2, . . . , Xi,ni), andH(X) andH(X|Y ) denote the entropy
and the conditional entropy respectively. We also recall that ∀ i, H(Xi|X0) = H(Xi), since
X0 is a dummy source used for initialization only. The three reference coding architectures
are:
• The All Intra (AI) scheme codes each source independently [68, 69]. While totally flex-

ible, this solution does not exploit the correlation between the sources. The storage
cost achieved by the AI scheme is thus1

SAI =
1

L

L∑
i=1

hi (2.8)

RAI =
∑
v∈V

p(v)
1

|v|
∑
i∈v

hi. (2.9)

1We recall that, for sake of clarity, these costs are expressed for lossless transmission.
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• The Multiple Prediction (MP) scheme stores one residue per possible prediction and
transmit the actual one once the request is known [70, 71, 72, 73]. These predictions
are built from each possible adjacent source available.

SMP =
1

L

L∑
i=1

∑
j:ej,i∈E

hi|j . (2.10)

RMP =
∑
v∈V

p(v)
1

|v|
∑
i∈v

hi|πv(i). (2.11)

Since hi|j ≤ hi, the transmission cost is reduced with respect to the AI scheme, and
the cost reduction increases with the correlation of the requested sources. On the
other hand, the storage cost increases significantly with the averaged degree of the
graph, i.e., with the flexibility offered to the client to navigate within the database.
• The Compound (C) scheme uses channel-based coding to build one single bitstream

able to correct any prediction [74, 75]. This is possible if this bitstream corresponds
to the worst prediction, i.e., the worst channel model. In that case,

SC =
1

L

L∑
i=1

max
j:ej,i∈E

hi|j . (2.12)

RC =
∑
v∈V

p(v)
1

|v|
∑
i∈v

max
j:ej,i∈E

hi|j . (2.13)

The C scheme is thus a good way of achieving reasonable transmission cost (between
RAI andRMP) while having a smaller storage cost than those of MP and AI schemes.
However, while it is reasonable to consider that one needs to anticipate the worst
scenario at the server side, this is unfortunate to transmit this bitstream in all the
cases, even if the prediction is of a better quality.

The storage and transmission costs are summarized in Figure 2.11.
In our work in (C28) and (J19), we have shown that when compressing one single

source with several potential side informations available at the decoder, it is possible to
use incremental coding in order to only send the necessary amount of bits. Based on the
graph-based client’s navigation formalism, we have generalized this result to the multi-
source scenario in (J19). We call this new coding scheme Incremental coding Based Ex-
tractable Compression (IBEC).

For each signal xi to be compressed, we first identify the parents of the source of index
i in the navigation graph G. These neighbors are used to build potential predictions x̂i|j .
They are then sorted from the best to the worst (i.e., from the smallest hi|j to the largest).
Then, we build a first bitstream bj1i able to decode the best prediction assuming that xj1
is already decoded at the receiver. For the second bitstream, the coding scheme is able to
use bj1i plus an additional bitstream bj2i of size hi|j2 − hi|j1 . This incremental construction
is applied in the same way to all predictions. As a result, the stored bitstream, for each
source, has the same size than the C scheme, i.e., the one corresponding to the highest
hi|j , but is split into several sub-streams so that only the necessary information can be
extracted. All schemes are illustrated in Figure 2.11.
The global performance of the IBEC scheme is:

SIBEC =
1

L

L∑
i=1

max
j:ej,i∈E

hi|j . (2.14)
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Figure 2.11: Storage and rate transmission costs summary. Our proposed IBEC scheme,
obtains the best theoretical storage and transmission costs.

and
RIBEC =

∑
v∈V

p(v)
1

|v|
∑
i∈v

hi|πv(i) (2.15)

As it can be seen from Figure 2.11, the proposed IBEC scheme obtains the smallest
storage and transmission costs of all the conventional architectures, i.e.,

SIBEC = SC ≤ SAI ≤ SMP (2.16)

and
RIBEC = RMP ≤ RC ≤ RAI. (2.17)

2.3.3 Practical scheme and experiments

In (J22) we have proposed a practical coding solution, able to reach such promising per-
formance.

Incremental coding principle: The source coding problem with one source and one
side information at the decoder can be solved in practice by channel codes [76, 77, 78,
79, 80]. Based on similar intuitions, we propose to construct a coding scheme based on
channel codes. However, the channel code needs to tolerate variable rate to adapt to all
the potential side informations. In practice, rate adaptation is achieved by choosing a rate
among a finite set of predefined source coding rates: R ∈ { 1

M , . . . ,
m
M , . . . ,

M
M }.

Assume that the decoder requests the source Xi, and has previously requested the
source Xj , with j ∈ {j1, ..., jJ} (see Figure 2.12(a)). Note that the size J of the neighbor-
hood depends on the node i, but for ease of presentation, we remove the dependence
with respect to i in the notation J . Let us further assume that the sources Xj , with
j ∈ {j1, ..., jJ} are sorted in increasing order of conditional entropy, i.e., from the most
to the least correlated source Xj ,

hi|j1 ≤ hi|j2 ≤ . . . ≤ hi|jJ . (2.18)
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(a) (b) (c)

Figure 2.12: (a) Navigation graph: source Xi can be requested after one of the source Xj ,
with j ∈ {j1, ..., j7}. (b) Correlation channel: the correlation between the sources Xi and
Xj is modeled by a channel with transition probability p(xi|xj). (c) MRA compression
scheme based on channel codes: encoding is performed by first computing the bitstreams
(bj1i . . .bj7i ) needed for the less correlated possible side information Xj7 . These bits are
stored at the server. Then, upon request of the source with index i, and knowing that the
source with index j has been previously requested, a subset of the bitstreams is extracted
and used with the side information xj to reconstruct the source vector xi.

We now explain how to encode the source vector xi into an extractable bitstream bi =

(bj1i ,b
j2
i , . . . ,b

jJ
i ).

Data encoding: let us consider that all correlated sources are marginally i.i.d., binary
with uniform distribution, and that each source Xi generates a vector of length n. We
model the pairwise correlation between the correlated sources by a channel with transi-
tion probability p(xi|xj), see Fig. 2.12(b). Futher assume that the correlation channel is
a binary symmetric channel. We use the rate-adaptive code called Low Density Parity
Check Accumulate (LDPCA) Code introduced in [81]. Given a set of predefined target
rates { 1

M , . . . ,
m
M , . . . ,

M
M } and a source vector length n, the LDPCA construction provides

M parity check matrices denoted (K1, . . . ,Km, . . . ,KM ), where Km is of size nmM ×n and
where

∀x,K1x ⊆ K2x ⊆ . . . ⊆ KMx (2.19)
meaning that K1x is a subvector of the vector K2x. In our simulations, we considered the
6336 irregDeg2to21 LDPCA code, whose parameters are available at [82].
We now explain how to encode the source vector xi. First, the so-called accumulated
syndromes are computed as

∀m, ai,m = Kmxi, (2.20)
where ai,m is of length nmM . Then, for each possible side information xj , and for each
accumulated syndrome ai,m, a reconstruction is performed according to the maximum a
posteriori criterion, i.e., ∀j ∈ {j1, ..., jJ},∀m ∈ {1, . . . ,M}

∀j ∈ {j1, ..., jJ}, ∀b ∈ {1, . . . , B},
x̂i,j,m = arg max

xi:ai,m=Kmxi

p(xi|xj). (2.21)

Note that this defines a modified channel decoder, since the search space is the coset of
syndrom ai,m and not the coset of syndrom 0, as in classical channel coding. When a
LDPC code is used, decoding is performed with the modified belief propagation (BP)
algorithm proposed in [83].
Then, for each possible side information xj , we select the shortest accumulated syndrom
aji such that the BP decoder recovers xi perfectly, i.e., ∀j ∈ {j1, ..., jJ}, ∀m ∈ {1, . . . ,M}

m∗(j) = argmin
m
{|ai,m| = n

m

M
s.t. x̂i,j,m = xi} (2.22a)

aji = ai,m∗(j). (2.22b)
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From the inclusion property of the accumulated syndromes (2.19), and from the order-
ing of the side information vectors (2.18), the optimal accumulated syndromes satisfy
aj1i ⊆ aj2i ⊆ · · · ⊆ aJi .
Finally, for the sourceXi, the stored sequence of bitstreams bi = (bj1i ,b

j2
i , . . . ,b

jJ
i ) is con-

structed from the aji as follows. First, bj1i = aj1i . Then, the second bitstream bj2i is obtained
by retaining the bits in aj2i that are not in aj1i , i.e., bj2i = aj2i \ aj1i . More generally, we have
bjki = ajki \ a

jk−1

i .
The resulting storage cost for the source Xi is Si = |aJi |/n, where the overall storage cost
is S = 1

L

∑L
i=1 Si.

Data extraction: Upon request of the source Xi, and knowing that the source Xj is
available at the decoder, the server extracts from bi the subsequence (bj1i ,b

j2
i , . . . ,b

j
i ) =

aji , and sends it to the decoder. This leads to a transmission cost Rji = |aji |/n. Then, the
transmission cost of a request, v = (l1, . . . , l|v|) is

R(v) =
1

|v|
∑
i∈v

R
πv(i)
i (2.23)

Data decoding: Upon request of the sourceXi, the decoder receives (bj1i ,bj2i , . . . ,bji ) =
aji . The decoder then performs BP decoding taking into the previously received side infor-
mation xj . From the rate adaptation performed at the encoder (2.22), the reconstruction
is performed without any error.

IBEC vs C scheme: The C scheme shares similarities with the proposed IBEC scheme
since, in both cases, a channel code is used to perform data encoding. In the IBEC scheme,
the index of the previous request j is used to adapt the transmission and send the com-
plement information only, as shown in (2.22). In the C scheme, this knowledge is not
used. The sent accumulated syndrome is the one that allows perfect reconstruction for
any possible side information (2.24a), in particular for the worst one (2.24b).

m∗ = argmin
m
{|ai,m| = n

m

M
s.t. ∀j x̂i,j,m = xi} (2.24a)

= argmin
m
{|ai,m| = n

m

M
s.t. x̂i,jJ ,m = xi} (2.24b)

∀j, aji = ai,m∗ . (2.24c)

IBEC and C schemes vs MP: The IBEC and C schemes use channel coding to perform
data encoding. By contrast, in the MP scheme all possible residues x̂i − xi|j ,∀(i, j) are
encoded with a variable length source code and then stored. Upon request of the source
of index i, after having requested the source of index j, only the compressed bitstream of
x̂i − xi|j is sent.

Experimental results: we now show that our IBEC solution enables to outperform the
baseline schemes and reach the performance promised by our theoretical derivation. We
have implemented the AI, MP, C schemes and our proposed IBEC. For AI, MP schemes the
coding of the source or the residue after prediction is done using an arithmetic coder. For
C scheme, the encoding is done with the 6336 irregDeg2to21 LDPCA code available at [82]
(as in (2.22), among the set of codes, we choose the LDPC code with minimum rate that
allows perfect reconstruction of the vector). For each graph, we have encoded the corre-
sponding data X, and simulated 100 client’s navigations, recording, each time, the trans-
mission cost. We have also calculated, for each case, the theoretical expected performance,
based on the entropy calculation, see Equations (2.8,2.9) for AI, Equations (2.10,2.11) for
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(a) Navigation graph
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Figure 2.13: Experimental results obtained for th Community network [84] and L = 256
sources.

MP, Equations (2.12,2.13) for C and Equations (2.14,2.15) for IBEC. A sample of the ob-
tained results in (J22) is shown in Figure. 2.13.

The IBEC scheme theoretically achieves the smallest storage and transmission costs,
respectively in Eq. (2.16) and Eq. (2.17). Said differently, our IBEC scheme achieves the
smallest transmission rate as MP scheme while reaching also the smallest storage cost as
the C scheme, which validates its potential advantage.

The difference between theoretical and practical costs is small for the schemes AI and
MP since they use an arithmetic coder whose performance is not far from the Shannon
bounds. On the contrary, the channel codes used in the C scheme and by the incremental
coders in the IBEC scheme have a more significant gap between theory and practice. Nev-
ertheless, despite this disadvantage, the practical performances comparison still demon-
strate the benefits of our scheme. This is indeed visible from the following observations:

• Compared to the AI scheme, both storage and transmission costs are always smaller
with the IBEC scheme. The results demonstrate the ability of the IBEC scheme to
take into account this correlation at the storage and transmission stages.
• Given the fact that the MP scheme reaches the best transmission rate possible (thanks

to en extensive storage cost), we observe that our IBEC scheme is really efficient. In-
deed, the transmission rate achieved by the IBEC scheme is almost the same (or
slightly higher) than the MP scheme, for a storage cost that is much lower. To be
able to reach the best transmission cost, the MP scheme has to store many residues,
exploding the storage cost, while this storage cost remains small with our scheme.
• Instead of storing any possible navigation transition, the C scheme stores for each

source, the worst one, as the IBEC scheme does. This is the reason why the stor-
age costs of the C and IBEC schemes are the same (and the minimum ones) in the
theoretical and practical performances. However, instead of transmitting the whole
codeword for every request as the C scheme, our IBEC scheme only transmits the
necessary subpart.

As a conclusion, in both theoretical and practical aspects, one observes that the IBEC
scheme reaches or is very close to the best expected transmission costs, with a minimal
storage cost.
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DECODER at User's side

Figure 2.14: Proposed interactive coding scheme for omnidirectional data.

(C28) A. Roumy and T. Maugey, Universal lossless coding with random user access:
the cost of interactivity, IEEE ICIP, Quebec, Canada, Sep., 2015 (Top 10%
papers)

(J19) E. Dupraz, T. Maugey, A. Roumy, M. Kieffer, Rate-Storage Regions for Ex-
tractable Source Coding with Side Information in Physical Communica-
tion, Elsevier, Special Issue on Coding and Information Theory for
Emerging Communication Systems, Vol. 37, 2019.

(J22) T. Maugey, A. Roumy, E. Dupraz, M. Kieffer, Incremental coding for ex-
tractable compression in the context of Massive Random Access in IEEE
Transactions on Signal and Information Processing over Networks,
vol. 6(1), pp. 251-260, Dec. 2020.

2.4 Practical interactive video coder for omnidirectional images

Based on the intuition above, we have built in (J24), and entire coding scheme for omni-
directional videos, greatly inspired from the principles exposed in (J22) and the previous
Section. In (C43), we have extended this scheme to handle 3D mesh texture.
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2.4.1 Proposed scheme’s overview

The proposed scheme is shown in Figure 2.14 and descibed in detail in (J24). It relies on
the following principles:
• the omnidirectional image is split into blocks2, and these blocks constitute the sources

xl (of previous Section and Figure 2.9) that are requested partly.
• given that the sources xl are the image blocks, the navigation graph simply links a

block with its 4 direct neighbors. This comes from the fact that the requested region
is made of a connected set of blocks.
• some blocks, the so-called access blocks, are intra coded. They correspond to the

neighbors of the dummy source X0 in the graphs.
• the decoding is done as depicted in Figure 2.15. First the access block is decoded.

And then, the blocks are decoded in an optimized order that can be decided at the
server’s side (and not at the encoder as in conventional compression schemes). The
already decoded blocks serve to predict the next block to be decoded.

Figure 2.15: Decoding process. The red block is the access block. The arrows indicate the
decoding order.

• the prediction of a block xl is done using intra prediction [85] using the available
neighboring blocks. In order to anticipate the different scenarios at the decoder,
several predictions are considered depending on the possible available blocks (see
Figure 2.16).

Figure 2.16: Possible available blocks when predicting a block (the central one in white).

2Any omnidirectional image format that supports block decomposition is compatible with our scheme.
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• the encoder uses the IBEC’s principle and store for each block an extractable code-
word able to handle any prediction.

With these principles, we are able to apply the IBEC’s strategy to an omnidirectional
image.

2.4.2 Experimental comparison

Assessing the performance of a coding scheme enabling random access raises several
questions. First, the transmission cost R naturally depends on user behavior. Second,
the rate cost is split into two terms: the storage and the transmission costs. In (C41), we
have proposed an evaluation strategy that basically consists in:
• record or simulate several user’s navigation, and evaluate, for each of them the trans-

mission cost. The final transmission cost R is simply their average.
• evaluate the weighted rate as

R+ λS, (2.25)
where λ sets the relative importance between the storage and the transmission costs.

We show the performance of the proposed scheme (called 360-IBEC) in Table 2.1 for dif-
ferent values of λ. The results are presented as the Bjontegaard gain over the scheme that
consists in transmitting the whole image. We first compare our method with the exhaus-
tive storage (ES) approach, that consists of a predictive coding scheme for which every
prediction is stored for every block. We can see that, when the storage size is not impor-
tant (λ = 1e−3), ES reaches the best performance. Theoretically, our 360-IBEC should
have reached the same performance, but it suffers from the small sub-optimality of the
proposed rate-adaptive LDPC. We also compare with the tile-based approaches (called
T.2 × 2 and T.7 × 7). These methods are the best when the transmission cost R is not
important (λ = 0.1). Indeed, sending useless pixels is not penalized, and only the storage
overhead matters. We can, however, see the benefits of the proposed approach when both
transmission and storage costs are important. The LDPC sub-optimality becomes negligi-
ble and being able to transmitted only the requested blocks without exploding the storage
cost is a great advantage.

Table 2.1: Weighted BD for requests of length 1 sec averaged over all users relative to the
no tiling approach (T. 1x1).

Market Street Mountain Church Seashore Park Jacuzzi Cafe Average

λ = 0.1

T. 2x2 -27.73 -24.53 -19.46 -30.02 -15.20 -27.82 -29.46 -24.82 -24.88
T. 7x7 -46.16 -45.84 -44.55 -45.84 -42.52 -45.65 -42.65 -45.16 -44.80

ES 362.05 360.38 358.54 359.84 359.48 361.02 359.02 360.72 360.13
360-IBEC -29.05 -28.76 -27.39 -28.29 -25.82 -28.08 -26.42 -27.55 -27.67

λ = 0.01

T. 2x2 -41.87 -37.03 -29.37 -45.32 -22.95 -42.00 -44.48 -37.48 -37.56
T. 7x7 -69.71 -69.23 -67.26 -69.23 -64.21 -68.93 -64.41 -68.22 -67.65

ES -19.47 -18.93 -17.53 -18.62 -15.85 -18.59 -16.68 -18.04 -17.96
360-IBEC -73.35 -72.11 -69.44 -71.47 -66.90 -71.69 -68.18 -70.70 -70.48

λ = 1e−3

T. 2x2 -44.11 -39.02 -30.95 -47.75 -24.18 -44.26 -46.87 -39.50 -39.58
T. 7x7 -73.46 -72.95 -70.87 -72.95 -67.67 -72.64 -67.87 -71.89 -71.29

ES -80.15 -79.26 -77.34 -78.82 -75.56 -78.96 -76.43 -78.28 -78.10
360-IBEC -80.40 -79.00 -76.13 -78.34 -73.45 -78.63 -74.83 -77.57 -77.29

2.4.3 Extension to 3D mesh texture coding

In (C43), we have proposed an extension of the IBEC’s principle to 3D mesh compression.
As it can be seen in Figure 2.17, the color information of a 3D mesh can be represented
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as a color atlas or texture map, that is basically an image gathering the pieces of the 3D
mesh.

(a) (b) (c) 

Figure 2.17: Decomposition of a 3D model (a) into its texture atlas (b) and its triangular
mesh (c).

As an omnidirectional image, the atlas in Figure 2.17(b) can be split into blocks. And
they can be coded with the same principles than the 360-IBEC scheme described above:
several predictions can be generated, and an incremental codeword is generated such that
it is able to correct any of them at the decoder side. Contrary to the omnidirectional im-
age case, we can see in Figure 2.18, that a request in the atlas can be a disconnected set of
blocks. One simply has to navigate in the geometry information to retrieve the neighbor-
hood information of the blocks on the border of a patch in the atlas.

Figure 2.18: Example of user’s navigation around the 3D model (left), what he observes
at a given instant (center), and the corresponding visible blocks V (in red) in the atlas
(right). For better visibility of the blocks, the black background area is turned into white
in the atlas.

As for the 360-IBEC, we have shown that our scheme is able to transmit only what
is requested, while exploiting the correlation between the blocks and keeping the extra
storage negligible.

(J24) N. Mahmoudian-Bidgoli, T. Maugey, A. Roumy, Fine granularity access in
interactive compression of 360-degree images based on rate adaptive channel
codes accepted in IEEE Transactions on Multimedia, 2020

(C43) N. Mahmoudian Bidgoli, T. Maugey, A. Roumy, F. Nasiri and F. Payan, A
geometry-aware compression of 3D mesh texture with random access Picture
Coding Symposium (PCS), Ningbo, China, Nov. 2019

(C41) N. Mahmoudian Bidgoli, T. Maugey , A. Roumy, Evaluation framework for
360-degrees visual content compression with user-dependent transmission
IEEE ICIP, Tapei, Taiwan, Sep. 2019
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2.5 Conclusion

In this Chapter, we have studied the problem of compression under user’s random access.
We have first shown that the conventional approach was incompatible with such assump-
tions. Then, we have extended the concept of image partitioning to the 6D navigation do-
main. We have proposed compact representations for describing the information of many
contiguous viewpoints, and we have proposed an optimal partitioning algorithm. In a
second group of works, we have developed a complete study from the theory to the practice
enabling to reach optimal coding performance. Based on innovative information theoret-
ical results, we have built a proof of concept scheme and two practical coding schemes for
omnidirectional images and 3D mesh. The groundbreaking result is that we have shown
that it was theoretically and practically feasible to send only what is requested by a user with
a small storage overhead.



Chapter 3

Graph construction: exploiting the
geometry of 3D images

We recall that a typical 3D image is composed of two entities: i) the color (also called
texture) and ii) the geometry (denoted by γ). The compression of such data has been
studied in the context of standardization (e.g., [86] for point clouds, [87] for 360◦ videos,
[88] for multi-view and [89] for Light fields) yielding to already efficient gain. However,
the non-euclidean topology inherent to these image modalities has not been taken into
account properly or only indirectly (thanks to mapping for example) leading to coding
sub-optimality. In this chapter, we describe how graph-based coding techniques have
been able to compress color signal exploiting the full benefit of the geometry data [90].
In particular, we discuss how transform operations can be efficiently defined on these
irregular topologies. We first pose the problem of graph construction in Section 3.1. We
then present examples of graph construction techniques for different image modalities
in Section 3.2. In these two first Sections, we assume that the geometry information is
coded separately, using specific coding tools (which have been reviewed in Section 1.2),
and in Section 3.3, we show that it can be beneficial to code the graph itself instead of the
geometry data.

3.1 Graph construction problem

Modeling an irregular topology with graph is equivalent to setting pairwise relationships
between theN pixels (considered as the nodes). These connections are then used to define
processing operations on the signal defined on this topology. Before discussing what is
the link between the pairwise relationships and the signal property, we first recall the
mostly adopted transform defined on the graph: the graph-fourier transform (GFT) (also
called graph-based transform (GBT).

The GFT is based on the eigendecomposition of the Laplacian operator as explained
in [91, 92]. For a graph G = (V, E ,W), the Laplacian is defined as L = D−W, where D
and A are the degree and adjacency matrices. The eigenvectors and eigenvalues of L are
respectively denoted by ul and λl (with 1 ≤ l ≤ N). By definition, the matrix U, whose
columns are the ul, diagonalizes L, i.e., L = UΛU> with Λ = diag([λl]1≤l≤N ). The graph
Fourier transform of the signal z is defined as its projection on the Laplacian eigenvectors:

α = U>z. (3.1)
The vector α contains the transformed coefficients or the spectrum of signal z. As recalled
previously, a transform is efficient for compression if it i) decorrelates and ii) compacts

39
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the signal energy. Let us analyze why and when the Laplacian can be considered as a
good transform for compression.

A first remark is that, based on the optimality of the Karhunen-Loeve Transform (KLT)
[93], a sufficient condition for the graph-Fourier transform to be able to decorrelate the
signal z is that its covariance matrix looks like the Laplacian L. In other words, the weights
wij that constitute the offline elements of L should reflect the amount of correlation be-
tween the source Zi and the source Zj (still considering that the signal z is a realization of
a vector of random variable (Z1, . . . , ZN )). A second remark is that the Laplacian operator
is strongly related to the notion of variation on the graph. Said differently, the eigenvectors
in U are ranked by their level of variation measured by the eigenvalues λi, i.e., diagonal
elements of Λ. The graph transform is thus able to compact the signal energy in some
coefficients, i.e., some eigenvectors, if the signal z exhibits a similar behaviour to that of
a few eigenvectors over the graph G. Based on these two remarks, we are able to state
that if the signal z is smooth on the graph, then the graph-Fourier transform is efficient
for compression. By smooth, we mean that the signal z does not vary too much along the
graph edges, or more exactly should vary according to the weights (i.e., large weights im-
ply low variation). Keeping this idea in mind, a usual way to measure the smoothness of
a signal is computing what we call a total variation of the signal on the graph (also called
Laplacian quadratic form) as follows:

TVL(z) = z>Lz =
∑
i,j

wij(zi − zj)2 =
∑
l

λlα
2
l , (3.2)

where the set of λl are the eigenvalues of the Laplacian matrix L. The smaller the total
variation on the graph, the more the energy of the transformed signal is concentrated in
the smallest eigenvectors. The role of the graph construction is to build a graph such that
the signal z is smooth on it. As such, the energy will be concentrated in a few coefficients
corresponding to low frequencies, and only those that are the most representative need
to be transmitted to the decoder side. In light with these principles we highlight two
challenges for graph construction: the topology and the weights.

Topology design: contrary to 2D images that benefit from a natural underlying 2D
grid, the topology of 3D data is not straightforwardly defined and has to be carefully
constructed depending on the data type. The topology design consists in finding the edges
E from a given set of nodes V . Based on the previous discussions, an edge should connect
two nodes if their attached signal values are correlated.

Weights adjustment: it simply consists in estimating the matrix W whose elements
wij are the weights assigned to each edge eij . As mentioned before, a good weight wij
should depict the correlation between pixel colors on node i and j.

3.2 ”Closer is more correlated”

The graph should be constructed identically at the encoder and the decoder. Therefore
the graph construction cannot be driven by the input signal z since it is not available at
the decoder. However, the geometry γ is available at the encoder and decoder and can
therefore be exploited to construct the graph. In order to define a graph on which the
signal x is smooth, the following hypothesis is formulated:
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Hypothesis: The correlation between pixels is decreasing with the distance between their cor-
responding points in the 3D space:

∀(i, j), wij = φ(||γi − γj ||22) with φ monotonically decreasing. (3.3)

This hypothesis is justified by the fact that two points close in space are more likely to
belong to the same object and therefore to have similar color. On the contrary, pixels that
are far away in space do not belong to the same part of the scene and their color can thus
be seen as independent. Despite its simplicity, this hypothesis already leads to an efficient
compression performance.

Figure 3.1: Graph topology for point clouds.

3.2.1 Nearest neighbor for 3D data

A first way of applying the Hypothesis in Equation (3.3) in practice is to build the topology
from scratch, relying mostly on the geometry. This is for example the case of Point Clouds,
for which two approaches can be considered.

In a first one, a node is linked to any other node in a given neighborhood (as illustrated
in Figure 3.1). More formally:

eij ∈ E if vi ∈ N (vj),

where N (vj) stands for the neighborhood of vertex vj . The neighborhood can simply be
a ball of a given radius around vertex vj , i.e.,

N (vj) = {vi | ||γi − γj ||22 < ε}.
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View i

Figure 3.2: Graph topology for light fields.

The neighborhood can also be defined based on octrees [94]. The vertices vj are usually
placed at the center of cubes that pave the 3D space. A given cube is adjacent to 26 other
cubes in space. These 26 cubes are taken as the neighborhood in [95, 96]. In a second
approach, a node can be linked to the k-nearest neighbors [97, 98, 99]. Said differently, a
node is linked to the k nodes that have the smallest distance ||γi − γj ||22.
With both topologies, the edges do not always link nodes with the same distance. In order
to fit with the hypothesis in Equation (3.3), several continuous functions can be consid-
ered: wij = 1

||γi−γj ||22
(inverse-distance model) as in [95, 96] or wij = exp

(
− ||γi−γj ||22

2σ2

)
(exponential model) as in [97].

We have extended the nearest neighbor principle to the coding of 3D mesh when they
are presented under the form of an atlas (see Section 2.4.3). In (C39), we have built the
following graph construction strategy. Since the atlas relies on a 2D grid, we have kept the
2D grid connections when meaningful, i.e., when the 4 neighbors are available. When one
or several neighbors is not available, as pixels at the border of a patch, we find the pixel
whose geometrical information γ is the closest. Said differently, we find the pixel that
is a neighbor on the 3D shape. After having built such a graph, we define a graph-based
transform that is used for compression. We experimentally demonstrate that compressing
the data with the proposed graph topology is more efficient than coding the atlas directly
with a classical image coder such as JPEG (see Figure 3.4(b)).

3.2.2 Far/Near model for Light field images

Light field images are very redundant (see Section 1.2). Indeed, pixels in different views
usually correspond to the same 3D point in the scene. Their color should be similar if
not equal. The idea of our proposal in (C32) is to detect these redundant pixels and link
them within a graph G. These edges are represented in blue in Figure 3.2. At the same
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Equirectangular sampling Healpix sampling

Figure 3.3: Graph topology for omnidirectional images based on two different sampling
approaches.

time, the 2D image grids in each image (red in Figure 3.2) are kept. It means that a node
is connected to its 4 neighbors in the same view, and to its corresponding pixels in other
views. While the inter-view (blue) edges connect pixels that are very likely to be corre-
lated, the intra-view (red) edges in each 2D image grid are not always meaningful since
two neighboring pixels could correspond to two different objects. This is the reason why,
the weights corresponding to red edges can be refined based on the geometry information,
i.e., disparity map. A far/near model can be adopted:

wij =

{
1 if ||γi − γj ||22 < ε

a otherwise ,

with a being an arbitrary small value.
Based on this graph, a coding scheme based on GFT is built. The disparity map is

transmitted so that the graph can be rebuilt at the decoder side. Experiments have shown
interesting gains compared to baseline approaches (see Figure 3.4(c)). This basic method
has however been improved (see Chapter 4) to take into account the local statistics of the
signal x.

3.2.3 Geodesic distance for 360◦ images

Before specifying the graph topology, the most important problem of spherical data rep-
resentation is to define the position of the pixels. Several sampling methods of the sphere
exist [100], each of them presenting advantages and drawbacks. In this section, we will
only focus on two of them: equirectangular and uniform sampling. All what is said here-
after is compatible with any other sphere mapping.
Equirectangular sampling consists in uniformly sampling the longitude and the latitude
of a sphere (as commonly done for representing the earth). The resulting pixels can then
be mapped easily into a 2D image, which makes it compatible with 2D processing tools.
For this reason, it has been widely adopted. However, the pixels are not uniformly sam-
pled on the sphere. Indeed pixel distribution is denser at the poles than at the equator. In
this case, the topology is simply derived from the 2D grid (Figure 3.3 left) but the weights
can be adjusted such that this heterogeneous distribution is taken into account.
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Figure 3.4: Rate-distortion comparison between our graph-based compression approach
and mapping-based solution. The mapping-based baseline respectively corresponds to
(a) JPEG in equirectangular format, (b) JPEG in the atlas format, (c) HEVC with the
Light Field views considered as a video.

Uniform sampling consists in spreadingN pixels uniformly over the sphere. Even though
this problem is mathematically unsolved, pseudo-optimal solutions exist such as the sam-
pling called HealPix introduced in [101]. In that case, the edges are built such that each
pixel is linked to its k-neighbors (k = 8 in Figure 3.3 right). Here also, the weights can
then be defined to take into account the distance between nodes, as for example in our
proposed method in (C44):

wij = exp

(
−
d2geo(γi,γj)

2σ2

)
,

where dgeo stands for the geodesic distance, i.e., the shortest distance on the sphere between
two points. The geodesic distance, or great-circle distance, differs from the cartesian dis-
tance between two points and is given by:

dgeo = 2arcsin
||γi − γj ||2

2
,

where γi refers to the 3D position of the pixels lying on a unitary sphere.
In (C44), we use the HealPix sampling to define an entire image coder operating di-

rectly on the sphere. Using the nice properties of HealPix sampling, we are able to define
spherical blocks on the sphere on which we redefine the conventional coding operations.
The transform is done using the aforementioned approach. We experimentally demon-
strate that this method is more efficient than: a conventional compression of the equirect-
angular image (see Figure 3.4(a)). It validates the double intuition of i) working directly
on the uniformly sampled sphere and ii) building a graph following the spherical geom-
etry.
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resentation and coding using geometry information, ICIP, Beijing, China,
Sep., 2017.

(C39) F. Nasiri, N. Mahmoudian-Bigdoli, F. Payan, T. Maugey ., A geometry-aware
framework for compressing 3D mesh textures, IEEE ICASSP, Brighton, UK,
May. 2019. cited in IEEE MMTC Review Letter of April 2019 Picture
Coding Symposium (PCS), Ningbo, China, Nov. 2019

(C44) N. Mahmoudian Bidgoli, T. Maugey , A. Roumy, Intra-coding of 360-degree
images on the sphere Picture Coding Symposium (PCS), Ningbo, China,
Nov. 2019

3.3 Transmitting the graph instead of the geometry

In the solutions above, the geometry is sent separately to the decoder and the geometry
serves to reconstruct the graph at the receiver. We have also wondered if it could be more
efficient to code the graph directly instead of the depth. In (C19,C20, C21,C24,J10,J16), we
have proposed a new representation for multi-view data, called graph-based representation
(GBR), that precisely uses the graph to encode the geometry information γ. This solution
enables to send the exact amount of geometry that is needed at the receiver and thus to
have a more compact data representation.

3.3.1 Graph-based representation (GBR)
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Figure 3.5: Illustration of GBR concepts for a simple scene.

Let us consider a scene captured by N cameras with the same resolution and focal
length f . The image captured by the nth camera is denoted by In, with 1 ≤ n ≤ N , where
In(r, c) is the pixel at row r and column c in In. In a first step, we only consider translation
between cameras, and we assume that the views are rectified (see Section 3.3.4 for more
general camera configurations). In other words, the geometrical correlation between the
views {In} is only horizontal. We further assume that an accurate depth image, Zn, is
available at the encoder for every viewpoint In. We then compute N − 1 dense disparity
maps from these depth images. In what follows we assume that the set of images contains
one reference view (typically the first, left-most, image) and N − 1 predicted views.

We categorize the different types of pixels depending on how they change from one
view to another (see Figure 3.6). Due to camera translation, a new part of the scene ap-
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a b dc

Reference image Warped image

object

background

arbitrary

row

Figure 3.6: Illustration of camera translation for a simple scene with a uniform back-
ground, and one foreground object. Types of pixels in depth-based inter-view image
warping: pixels can be a) appearing, b) disoccluded, c) occluded and d) disappearing.
The green plain line is an arbitrary row in the reference view and the dashed line is the
corresponding row in the target view.
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Figure 3.7: Graph construction example: the blue texture background has a disparity of
1 at each view and the red rectangle foreground has a disparity of 3 for each view. This
example graph contains all different types of pixels: a) appearing, b) disoccluded, c) oc-
cluded and d) disappearing.

pears on the right or left of the image (appearing pixels) and another part disappears (dis-
appearing pixels). As we move from one camera to a next, foreground objects move faster
than the background. As a result, some background pixels may appear behind objects
(disoccluded pixels). Conversely, some background pixels may become hidden by a fore-
ground object (occluded pixels). If we consider a pair of views (reference and target), a
row of the target view can be reconstructed by copying pixels from the corresponding row
of the reference view, except when the above mentioned types of pixels occur (in which
case “new” pixels have to be inserted). Our graph approach directly conveys this infor-
mation by transmitting either i) a link to the location in the reference row where pixels should
be copied from, or ii) the values of new pixels to be inserted.

A graph with N layers describes 1 reference view and N − 1 predicted views. Its
construction uses the information provided in the depth maps Zn, 1 ≤ n ≤ N − 1. The
constructed graph is made of two components, which are described by two matrices of size
N ×W , whereN is the number of layers (i.e., the number of views encoded by the graph)
andW is the image width. These two matrices are the color values Λr and the connections
Γr and represent color and geometry information for all pixels of all views, where r is the
row index (a pair of matrices per row). The matrices Λr and Γr are generated based on
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the following principles. Pixel intensity values are stored in the layer (view) where they
appear first. This means that a given layer only contains pixels that were not present in a
lower layer. Then, the connections simply link these “new” pixels to the position of their
neighbor in the previous layer. We show in Figure 3.7 a simple graph construction example
for a given row r, with 5 levels (1 reference and 4 predicted views). At the decoder side,
the reconstruction involves traversing the graph (left to right) and copying pixel values.
An example for the synthesis of view 2 is depicted with the green arrows in Figure 3.8.

level index

1

2

3

4

5

column index c of row r

column index c of row r

Reconstruction 

of level 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

3 4

5 6 7 8 9 10 12 13 14 15 16 17 18 1911

Figure 3.8: Reconstruction of level 2 with the toy example of Figure 3.7. The green arrows
indicate the graph exploration order for view reconstruction.

Graph-based representation has several advantages: i) it removes inter-view redun-
dancy (i.e., a pixel appears only once), ii) it connects neighbors in the 3D scene, which is
useful for color compression (see Section 3.3.3) and iii) it represents the geometry infor-
mation in a compact form (see Sec 3.3.2).

For the sake of conciseness and clarity, we consider that the disparity is integer, but
non-integer disparity have been tackled in the developed algorithms.

3.3.2 Retrieving the geometry from the graph

As claimed previously, the graph-based representation captures the geometry informa-
tion. In other words, from the connections stored in the geometry matrices {Γr}r, we are
able to retrieve the disparity information, hence the geometry of the scene.

Concretely, a disparity value corresponds to the shift that a pixel does between two
views. Looking at the way the views are reconstructed from the proposed GBR (illustrated
in Figure 3.8), the shift for each pixel can be estimated during the reconstruction process.
Let us take the example of the reconstruction of view 2 in Figure 3.8. At the beginning,
one appearing pixel is present (i.e., pixel of index 1). The disparity of the pixel of index
2 in the view 1 is thus equal to 1. Then, two disoccluded pixels occur (i.e., of index 3 and
4), implying that the disparity of pixels of index 5, 6 and 7 have a disparity of 1 + 2 = 3.
The rest of the disparity values are retrieved on the same principle. Since, the retrieved
disparity corresponds to the shift used to synthesize the views, it naturally corresponds
to the exact geometry precision needed at the decoder. We illustrate this nice property in
Figure 3.9. A graph-based representation is built from the original depth maps in (a) and
(b). The geometry retrieved at the decoder is depicted in (e) and (f). More precisions
on how the graph is coded can be retrieved in (J10). As a comparison, we show in (c)
and (d) the depth compressed with the same bitrate as the graph using a state-of-the-art
depth coder. We can clearly see that the GBR depth is sharper and thus more adapted to
the rendering task. This is confirmed by the rate-distortion comparison shown in Table 3.1.

Another illustration is proposed in Figure 3.10, where the disparity is retrieved for
two configurations: rendering of view 2 and view 3 (that is more distant). We can see
that, depending on the rendering task, the retrieved depth has different precision levels,
demonstrating that GBR well adapts to what is needed for the rendering at the decoder.
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(a) (b)
EAW

(c)

EAW

(d)
GBR

(e)

GBR

(f)

Figure 3.9: Geometry images for “Sawtooth” (left) and “Statue” (right) sequences. Sub-
figures (a) and (b) are the original depth maps. Subfigures (c) and (d) are the depth
maps coded with edge-adaptive wavelet (EAW) based coder [102], while (e) and (f) are
geometry images extracted from our GBR. In these visual examples, the geometry coding
rate of EAW is equal to the rate of our GBR (30 kb for “Sawtooth” and 10 kb for “Statue”).

3.3.3 Color compression using GBR

As seen in the previous section, graph-based representations describe the geometry in
a compact form. Another advantage of such approach is that the topology links pixels
that are neighbors in the 3D scene (exactly as a 3D mesh, see Figure 3.5). Therefore,
this graph can be used to compress the color information. In (C24), we have designed
a graph wavelet transform along with a adapted SPIHT algorithm to compress the color
information. The geometry information can even be used to set graph weighs. An exam-
ple of obtained rate-distortion results is shown in Figure 3.11. The proposed approach is
denoted by wGBT. We consider a second version of the proposed approach denoted by
nGBT, in which no weight is assigned on the edges. We compare these two approaches
with a simple differential coding on the graph (DC) and a shape adaptive transform (SA)
as proposed in [103]. We can conclude that the proposed graph wavelet is able to com-
pact the color more efficiently than other baseline methods. Moreover, we can see that the
weights are also useful to accurately describe the inter-pixel correlation.
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Table 3.1: Rate comparison between GBR and baselines compression methods with syn-
thesized views at 0.05 dB from the optimal quality.

GBR vs JP2K GBR vs HEVC GBR vs EAW
“Couch” −20.0% −2.0% −46.6%
“Statue” −43.5% +161% −6.87%
“Bikes” −39.9% −26.0% −25.5%
“Church” −45.0% +16.7% −30.3%

Figure 3.10: Illustration of depth images (first row), GBR geometry for view 2 prediction
(second row), and GBR geometry for view 3 prediction (third row).

3.3.4 Extensions

The graph-based representation described above relies on the assumption that the views
are vertically aligned. In practice, such camera configuration is not always conceivable.
The cameras can for example have rotations between them. They can also lie on a 2D grid
like for light field capture. In all these scenarios, the graph-based representation con-
struction has to be adapted. In (J16), we have developed a graph-based representation
for general camera configuration (including rotation, forward/backward displacements).
Despite the complexity of the object transformation between the views, the constructed
graph keeps its essential properties (see Figure 3.12): i) it is sparse, ii) it links neigh-
boring pixels in the 3D scene and iii) it describes the geometry information. We have also
extended our proposed representation to the Light Field format in (C30). In order to guar-
antee property i), we have proposed a graph sparsification method enabling to reduce the
graph coding cost.
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Figure 3.11: Rate-distortion evaluation for multi-view coding (geometry+luminance).
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Figure 3.12: Graph-based representation for complex camera configuration.

3.4 Conclusion

In this Chapter, we have presented some proposed solutions to tackle the fact that some 3D
visual data rely on irregular domain. Based on the geometry information, we have built
a graph connecting pixels that are close in the 3D space, assuming that they should be
correlated. In particular, we have proposed graph construction strategy to handle various
types of 3D data such as multi-view, 360◦, Light-Field and 3D mesh. Each time, we have
proven that the proposed graph enables to extend the benefits of a transform-based energy
compaction on the 3D data topology directly even though it is irregular. We have even
shown that this graph, if transmitted, could be used to retrieve the geometry information
and thus to save bitrate by not sending it to the decoder. Despite its high potential, the
graph-based transform is computed at the price of a huge computation cost, which is not
always conceivable in practice. In the next Chapter, we explain the methods that we have
proposed to circumvent this issue.
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Chapter 4

Graph-based transform for
high-dimensional data

4.1 Graph-based transform and complexity issue

As discussed in the previous chapter, graphs have been shown to be useful tools to model
data correlation within many types of images, and to define transform supports for decor-
relation and signal compaction. However, the high dimensionality and resolution of the
data in hand have obvious implications on the storage footprint of the Laplacian matrix L
(whose dimensions is N ×N , where N is the number of pixels in the image) and on the
transform computational complexity, which can make graph-based transforms impracti-
cal. Indeed, estimating the transform basis implies to diagonalize the Laplacian matrix
(see Equation (3.1)). Such operation has a complexity of O(N3) and becomes rapidly
intractable when the dimension of the Laplacian increases. One solution is thus to limit
the Laplacian size, while preserving a good data representation efficiency. We have in-
vestigated three solutions to decrease the dimension of the Laplacian itself (see Figure 4.1
below): segmentation, dimension separation and reduction. We detail each of these so-
lutions in the next three sections.

(a) Full Laplacian (b) Segmentation

(c) Dimension separation (d) Reduction

. .

Figure 4.1: Envisaged solutions to decrease the Laplacian dimension.

53
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4.2 Graph segmentation

4.2.1 Motivations and problem

To reduce the dimension of the graphs, one can construct local graphs by first segmenting
the data. This amounts to approximating the full Laplacian L by a block diagonal matrix,
L̃seg where the blocks Lk can be diagonalized independently (see Figure 4.1(b)), decreas-
ing the overall complexity. The question is how to efficiently split the graph into different
sub-graphs ? Or said differently, what edges have to be cut ?

As discussed in the previous chapter, the graph-based transform, defined as the eigen-
vectors of L, is efficient to compact a signal z if the signal is smooth on the graph. This
smoothness is measured by the total variation

TVL(z) = z>Lz. (4.1)

The transform enables to compact z if TVL(z) is small. When the graph is constructed
based only on the 3D data geometry γ (as in the previous Chapter), it may happen that
large variations occur along an edge. Hence, cutting such an edge tends to decrease the
total variation. Said differently, a good graph segmentation leads to

TVL̃seg
(z) ≤ TVL(z), (4.2)

since it enables to reduce the transmission cost of the transformed coefficients. If the sig-
nal z is used to perform the graph segmentation, this segmentation has to be transmitted
to the decoder as well, leading to an extra cost, hopefully balanced by the coefficient trans-
mission cost reduction. In the following, we introduce two solutions proposed to perform
such segmentation and their associated coding scheme. The first one estimates the seg-
mentation based on the signal z of one view of a light field and extrapolates it on all other
views. In the second one, we propose a rate-distortion optimized segmentation for 360◦
data.

4.2.2 Super-ray segmentation

A light field is typically made of more than 12 millions of pixels. Obviously, it is incon-
ceivable to diagonalize a Laplacian matrix of size 12 millions × 12 millions. Segmenting
the graph is thus unavoidable. As stated before, a good segmentation keeps, in each sub-
graph, pixels that are correlated (in order to keep the total variation low). Two types of
correlation occur for light field.

Spatial correlation: within each sub-aperture image, neighboring pixels representing
the light activity of two points close in the 3D world (i.e., belonging to the same object)
might be correlated. They can be gathered in a same group called super-pixel [104]. Dif-
ferent segmentation methods can be considered either using normalized cuts on graphs
or graph-cut techniques [105], or using clustering as performed by the Simple Linear It-
erative Clustering (SLIC) [106] or the SEED [107] algorithms, leading to so-called super-
pixels. In our proposed solutions in (C35, C35, J21), we have used the SLIC algorithm as
depicted in Figure 4.2.

Angular correlation: across the light fields sub-aperture images, some pixels describe
the light activity emitted from the same 3D point. They are naturally correlated between
each other. This is the reason why, the concept of super-rays introduced in [108] extends
super-pixels to 4D light fields by grouping light rays coming from the same 3D object. The
method performs a k-means clustering of all light rays based on color and distance in the
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Figure 4.2: An example of super-pixel segmentation for spatial correlation.

3D space. This method does not really suits for compression because the 4D segmentation
is costly to describe. We have proposed an alternative solution that consists in projecting
the SLIC-based super-pixels estimated on one view onto every other views using the dis-
parity map. Therefore, only the super-pixel segmentation and the disparity map have to
be transmitted to the decoder.

Figure 4.3: An example of a graph built over a super-ray. The color corresponds to the
pixel intensity.

Coding strategy: Once the super rays are constructed, a graph is then built to connect
neighboring pixels as depicted in Figure 4.3. Each super-ray k is assigned to a Laplacian
Lk that is diagonalized. This approach remains quite complex since the different Lk are
quite highly dimensional because of the large number of views in the light field. This
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Figure 4.4: Rate-distortion optimized graph segmentation for 360◦.

approach will be referred as the non-separable transform in the following. Rate-Distortion
comparison involving this method will be provided later in this Chapter.

4.2.3 Rate-distortion optimized segmentation

Even if the above methods, essentially relying on color similarity and distances in space,
are designed so that super-pixels or super-rays adhere well to the boundaries of objects,
they do not explicitly rely on smoothness constraints of the local graphs that can be con-
structed on these regions. Yet smoothness or total signal variation can be a useful criterion
to define the local graph supports when the goal is signal energy compaction that has a
direct impact on the bit rate in a compression context. Moreover, in the methods described
above, the cost of transmitting the segmentation boundaries is not taken into account in
the cutting decision. In (C36), we have proposed a rate-distortion optimized segmenta-
tion of the graph-based domain describing a 360◦ image. The problem is posed as follows:

min
G̃={Gk}

D(G̃) + γRC(G̃) + βRB(G̃),

subject to Nk < Nmax, ∀i
(4.3)

where G̃ = {Gk} is the global graph partitioning, i.e., the global graph in which some edges
are removed. D(G̃) is the distortion between the original image and the reconstructed one,
RC(G̃) is the rate cost of the transform coefficients, andRB(G̃) is the rate cost of the graph
partitioning description. The size of each graph Nk is constrained to be smaller than a
maximum tolerable number of pixels Nmax.

The impact of the partitioning on the distortion termD(G̃) is assumed to be negligible.
The termRC(G̃) is modeled using the total variation as it is done in [109]:

RC(Gk) ∝ TVLk
(zk), (4.4)

where Lk is the Laplacian of graph Gk and zk is the signal lying on Gk. The rate of the
partitioning RB(G̃) is modeled as a function of the boundary length and the regularity
of its shape. The optimization problem is solve with an original iterative normalized cut
algorithm. Visual result of the partitioning is depicted in Figure 4.4(a) and rate distor-
tion evaluation is shown in Figure 4.4(b). We can see that the proposed method enables
to outperform JPEG, showing that the optimization of criterion in Equation 4.3 leads to
coding gain compared to a fixed size transform.
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4.3 Separable transform

As stated in Section 4.2.2, even after a graph segmentation, the size of each subgraph can
remain too large. In that case, one needs to exploit other methods to decrease the complex-
ity. In this Section, we explore how separable transform can be defined (see Figure 4.1(c)).
First, we define what is a separable transform, and we discuss its impact on the Laplacian
diagonalization. Then, we explain how this factorization can be considered on an irreg-
ular graph, and what problem it raises. Finally we show how we applied this separable
transform in the context of light field compression.

4.3.1 Definition

Let us assume that the signal z is of dimension N , and that there exist {Md}d∈[1,D] such
that N = M1 ×M2 × . . . ×MD. Let us further assume that there exists a function called
the index factorization:

σ : [1 : N ]→ [1 :M1]× . . .× [1 :MD]

i 7→ (j1, . . . , jD) (4.5)

that maps the index of i into a vector of sizeD. Each jd may be interpreted as the position
of index iwith respect to the dth dimension axis (such as time, space, etc.). Thanks to this
functionσ, we are able to rewrite z as a tensor zσ of orderD. Let zdσ(j1, . . . , jd−1, jd+1, . . . , jD)
be the extracted vector along the dth dimension at position (j1, . . . , jd−1, jd+1, . . . , jD).

A separable linear transform [110, 111] is composed of a set of d matrices Ud each of
them, operating on the dth dimension axis. The separable transform is applied succes-
sively on each dimension. In more details, the transformed tensor ẑσ is first initialized
with zσ. Then, the Dth transform is applied as follows ∀ (j1, . . . , jD−1):

ẑDσ (j1, . . . , jD−1)← UDẑDσ (j1, . . . , jD−1). (4.6)

Then, successively, the dth transforms are applied ∀ (j1, . . . , jd−1, jd+1, . . . , jD):

ẑdσ(j1, . . . , jd−1, jd+1, . . . , jD)← Udẑ
d
σ(j1, . . . , jd−1, jd+1, . . . , jD). (4.7)

When computing the dth transform in (4.7), the elements of ẑσ are already transformed
along the dimensions d′ > d.
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The order with which the transformed coefficients are computed is not important.
However, given an order (let us say from D to 1), the above separable transform process
is equivalent to perform the global transform:

ẑ = Uz (4.8)

with
U = U1 ⊗ . . .⊗Ud ⊗ . . .⊗UD. (4.9)

In that case, σ is simply the inverse of the usual “vec” that vectorizes a tensor across the
dimensions. If the initial indices i are not arranged according to this natural index factor-
ization, a permutation can be applied a priori. In the next Section, we discuss what could
be the benefits of having such separable transform for the Laplacian diagonalization.

4.3.2 Separable Laplacian

From (3.1), the graph transform is obtained by a diagonalization of its Laplacian matrix
L. In the scenario where the graph’s nodes can be factorized with a function σ as defined
in the previous Section, and that the transform matrix U can be expressed as a separable
transform (see (4.9)), we can write:

L = U>ΛU

L = (U1 ⊗ . . .⊗UD)
>(Λ1 ⊗ . . .⊗ΛD)(U1 ⊗ . . .⊗UD). (4.10)

This expression can be factorized as

L = (U>1 Λ1U1)⊗ . . .⊗ (U>d ΛdUd)⊗ . . .⊗ (U>DΛDUD)

L = L1 ⊗ . . .⊗ Ld ⊗ . . .⊗ LD. (4.11)

It means that there is a direct link between a separable transform and a separable Lapla-
cian. It implies that if one is able to write the Laplacian in a separable way, each sub-
Laplacian can be diagonalized, and the global graph transform can be retrieved from each
sub-transform matrix Ud. This way of doing could considerably decrease the transform
calculation complexity.

Defining a separable Laplacian is therefore interesting for complexity saving and par-
allelization. However, this is not always possible because of two reasons. First an index
factorization σ does not always exist. This is even the general case, when the structure of
the graph is arbitrary and is not ruled by natural underlying axes such as space or time. In
Section 4.3.3, we explain how this separability can be approximated and what side prob-
lem it can raise. We finally propose a solution to tackle such problem and properly define
a separable transform in practice.

4.3.3 Dimension factorization

First, it is important to recall that, in general, graphs cannot be expressed in a separa-
ble fashion. Indeed, the separability implies a grid shape of the graphs which remains
quite specific. However, in some cases, some underlying dimensions (row, columns, an-
gle, time, etc.) exist and the initial graph is not far from being approximated by a grid.
We show in Figure 4.5(a), a toy example of such a graph. This graph is organized as rows
and columns, with some missing nodes. Considering this graph as separable consists in
defining a vertical and an horizontal transform. This however brings two problems.
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(a) Quasi-grid graph

− 0.3 − 0.2 − 0.1 0.0 0.1 0.2 0.3

(b) {ujver(3)}j
− 0.3 − 0.2 − 0.1 0.0 0.1 0.2 0.3

(c) {ujver(6)}j

− 0.3 − 0.2 − 0.1 0.0 0.1 0.2 0.3

(d) {ũjver(3)}j
− 0.3 − 0.2 − 0.1 0.0 0.1 0.2 0.3

(e) {ũjver(6)}j

Figure 4.5: (a): a quasi-grid graph that is nearly separable, (b) and (c): examples of sep-
arable transform basis computed independently on the different “columns” of the graph,
(d) and (e): separable transform basis aligned by minimizing Equation (4.12) with the
matching nodes depicted in red.
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First, the different vertical transforms may not be consistent between each other. More
generally, in ideal separable scenario, the separable transform as computed in (4.7), uses
the same transform matrix Ud along the dimension d. Said differently, the transform ba-
sis should be identical when applied at the different positions on the other factorized di-
mensions. It means, for the example of Figure 4.5, that the basis of the vertical transform
should be the same for every column of the graph. This is by nature impossible because the
number of nodes is not even the same. Moreover, when diagonalizing the sub-Laplacians,
the eigenvectors are not consistent between each other, as depicted in Figure 4.5(b) and
(c). Inspired by prior works [112], we have proposed a solution to align the basis. The
goal is to build a consistent transform in each sub-graph. Let us denote by Ljd = Uj>

d Λj
dU

j
d

the dth separable Laplacian for every position j over the remaining dimensions (i.e., other
than d). For the example of Figure 4.5, d corresponds to the vertical direction and the j
corresponds to the different columns. When aligning the basis, one has to solve a general
form as:

min
{Ũj

d}j
Econs({Ũj

d}j) + λ
∑
j

Ecomp(Ũ
j
d). (4.12)

On the one hand, the termEcons({Ũj
d}j) controls the consistency, i.e., the fact that the differ-

ent basis functions of the transforms are consistent over the j. Some nodes of each column
are identified as matching nodes, based, for example, on geometry information (depicted
in red in Figure 4.5(d) and (e)). The term Econs is set up such that the basis functions
match on these matching nodes. More practically, a reference column jref is selected, and
Econs is defined as:

Econs({Ũj
d}j) =

∑
j 6=jref

||Fjref Ũ
jref
d − FjŨ

j
d||

2
2, (4.13)

where the Fj are matrices with 1 on the matching nodes indices and 0 elsewhere. On the
other hand, the term Ecomp(Ũ

j
d) controls the compaction efficiency of each Ũj

d. For exam-
ple, in [112], this term is defined as the capacity of Ũj

d to diagonalize the corresponding
Laplacian Ljd:

Ecomp(Ũ
j
d) = off(Ũj>

d LjdŨ
j
d). (4.14)

This optimization can be solved using a gradient descent. More details on the gradient
expression can be found in (J20). An example of results obtained by such optimization is
given in Figure 4.5(d) and (e). We can see how the basis now match on the red nodes,
which implies more consistent behavior over the whole graph.

Once this first transform along the dimension d is applied, the second issue deals with
the design of the next transform (i.e., the horizontal one for the toy example of Figure
4.5). In an ideal grid, the spectral bands (i.e., the coefficients corresponding to a given
eigenvalue) are transformed together. However, in the case of a quasi-grid, the number of
bands is different and they correspond to different eigenvalues over the different columns.
Inspired by shape-adaptive DCT [113], this can be solved by regrouping the bands by
eigenvalue indices. In other words, the transformed coefficients corresponding to eigen-
value i are coded together thanks to the eigenbases Ui

d−1 (or Ui
hor in the example of Figure

4.5). Since the topology is not perfectly regular, it may happen that the number of nodes
for each i is not the same. For example, in Figure 4.5, the 14th and 15th row are not com-
plete. To deal with this situation, we propose to consider the uncomplete rows as new
vertical subgraphs where additional edges are added so that the graph is connex. New
Ui
d−1 are computed (with the good number of nodes) and possibly aligned with the oth-
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ers Ui
d−1 as explained before. In the following, we apply such dimension factorization

strategy to the problem of light field compression.

4.3.4 Application to Light field compression

When dealing with super-rays defined on light fields (see Figure 4.3), one typically has a
quasi-grid graph as in Figure 4.5(a). Indeed, the super-pixel’s shape may vary across the
views due to, for example, occlusion of a background. This may cause basis misalignment
problems that should be solved with our proposed method introduced in the previous
Section. In Figure 4.6, we show an example of alignment of the spatial transform basis,
i.e., the basis of the transform performed in the super-pixel of each view.

Edges of the �rst spatial 

graph transform inside 

views

Correspondences 

between views

Figure 4.6: Second eigenvector of different super-pixels belonging to the same super-ray
before and after optimization.

We implement a light-field coding scheme using these separable graph-based trans-
form and we compare its performance with the non-separable case (introduced in Sec-
tion 4.2.2) and the non-optimized transform, i.e., no basis alignment. A typical rate-
distortion result is shown in Figure 4.7.
We can first see the effect of the proposed alignment algorithm that clearly outperforms
the scheme using the misaligned basis. Unfortunately, the optimized separable transform
does not exactly reach the non-separable transform performance, especially at high bitrate.
This is explained by the fact that the basis alignment is more difficult for high ”frequen-
cies” (i.e., highly varying eigenvectors). To conclude, the complexity is drastically de-
creased with a separable transform with a small price to pay on the coding performance.
In the next Section, we present a third approach to reduce the Laplacian diagonalization
complexity, namely the graph reduction.

(J20) M. Rizkallah, T. Maugey, C. Guillemot, Geometry-Aware Graph Transforms
for Light Field Compact Representation in IEEE Transactions on Image
Processing, vol. 29, pp. 602–616, Jul. 2019.



62 CHAPTER 4. GRAPH-BASED TRANSFORM FOR HIGH-DIMENSIONAL DATA

0 0.1 0.2 0.3 0.4 0.5 0.6

Bitrate (bpp)

28

30

32

34

36

38

40

42

P
S

N
R

 (
d

B
)

Stone Pillars Inside

HEVC Lozenge

Separable not optimized

Non Separable

Separable optimized

JPEG PLENO VM 1.1

Figure 4.7: Example of Rate Distortion performance obtained with our graph based cod-
ing scheme (Non separable, not optimized and optimized separable graph transforms)
compared to Light Field coding baselines.

4.4 Graph reduction

4.4.1 Motivations

As it was explained in Section 4.2.1, estimating the full Laplacian L with a block diagonal
matrix aims at keeping the dimension of each sub-block Lk below a certain size while,
at the same time, decreasing the total variation (see Equation (4.2)). Unfortunately, this
goal may not be always achievable. As an example, let us take a signal z that is extremely
smooth over the whole graph. Because of the Laplacian size constraint, one needs to cut
the global graph into, for example, two subgraphs. Given that TVL(z) is already very
low, it is more likely that one cannot find any edge sets for which TVL̃seg

(z) < TVL(z).
In that case, a segmentation would decrease the coding performance and alternative so-
lutions have to be explored. Note that if the signal z is smooth on the graph, it means that
in the transformed domain, a few coefficients could be sufficient to describe it. It means
that its dimension could be reduced. The only barrier is that the computation of such
transformed coefficient is intractable. To circumvent this issue, one may think of reducing
the dimension a priori. We could approximate the full N ×N Laplacian L by a Laplacian
L′ of smaller dimension N ′ ×N ′, using projection and back-projection matrices (see Fig-
ure 4.1(d)). Same matrices should be used to reduce the dimension of the signal z as well.
If this signal is sufficiently smooth, its low-dimension approximation z′may not cause too
much error at the reconstruction stage. This is the intuition behind graph reduction tech-
niques. In the next Section, we focus on one particular type of graph reduction, namely
the graph coarsening. We then explain how we used this technique for the context of light
field compression.
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(a) Big graph (b) Coarsened graph
Figure 4.8: Illustration of coarsening result with [114]. Colors depicts the pixels that are
merged during the coarsening process.

4.4.2 Graph coarsening principles

Graph reduction consists in finding a proper reduction matrix P ∈ RN ′×N , used to define
the reduced signal and Laplacian as:

z′ = Pz

L′ = P∓LP+.
(4.15)

Symbols + and ∓ denote the pseudo-inverse and the transpose pseudo-inverse respec-
tively. The reduced signal z′ can be lifted back to the original dimension by doing the
following operation:

z̃ = P+z′. (4.16)
Coarsening is a special case of graph reduction abiding to a set of constraints that ren-

der the graph transformation explainable. Contraction sets are formed from the vertices
vi. As such, every reduced variable corresponds to a small set of adjacent vertices in the
original graph and coarsening amounts to a scaling operation. The set of adjacent vertices
is denoted by V(r) and is called a contraction set to produce one vertex in the reduced
graph. Neighboring vertices belonging to the same contraction set are depicted with sim-
ilar colors in Figure 4.10(a). The coarsening matrix P satisfies two important conditions.
First each node belongs to one and only one contraction set. Second, the contraction set
should be connected in the graph. This method of constructing the matrix P enables a
simple inversion of P. Moreover, if we constrain all non zero entries of P+ to be equally
valued (each node is aggregated with the same weight), then the resulting coarsened ma-
trix L′ is also a graph Laplacian matrix. In that case the matrices P and P+ are defined
∀r < N ′ and ∀i < N as:

[P](r, i) =

{
1

‖V(r)‖ if vi ∈ V(r)
0 otherwise (4.17)

[P+](i, r) =

{
1 if vi ∈ V(r)
0 otherwise (4.18)

The resulting Laplacian L′ is of a smaller dimension and is thus simpler to diagonalize.
The work in [114] shows that a graph can be reduced such that its fundamental struc-
tural properties are preserved namely its first eigenvectors and eigenvalues. Authors in
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[114] are thus able to guarantee a low reconstruction error between z and x̃ for sufficiently
smooth signal z. In the following, we explain how we have used this coarsening technique
in a light field compression algorithm.

4.4.3 Application to Light Field compression

Using the technique described above, we have proposed a rate-distortion optimized super-
ray partitioning for light field compression. Contrary to the fixed-size approach described
in Section 4.2.2, we intend to adjust the size of the super-ray to the local signal statistics.
The proposed strategy is summarized in Figure 4.9. Basically, if the signal is smooth on the
graph, we define large super-rays and we use coarsening techniques to reduce its dimen-
sion. On the contrary, if the signal is not smooth, we cut the graph into two sub-graphs to
lower the total variation. On top of the signal smoothness, we consider the cost of bound-
ary description.

Figure 4.9: When the full Laplacian is to heavy to compute, two strategies are possible
depending on how smooth is the signal on the graph.

The optimal partitioning problem is formalized as follows:
min
G̃={Gk}

RC(G̃) +RB(G̃)

subject to D(Gk) < Dmax ∀k
(4.19)

G̃ = {Gk} represents the set of local graphs capturing local color information and the color
variation inside the 4D light field. D(Gk) is the distortion between the original signal and
the reconstructed one on the kth graph,RC(G̃) is the rate cost of the quantized transform
coefficients sent to the decoder side, and RB(G̃) is the rate cost of the boundaries for the
graph partitioning description. We assume that the maximum tolerated Laplacian size is
Nmax. Which means that if Gk has a size Nk > Nmax, a coarsening is performed, possibly
impacting D(Gk).

We propose to solve this problem iteratively. We start from large size super-rays, and
for each of them, we decide if it is beneficial (in terms of criterion in Equation 4.19) to
split it into two sub-graphs. Then the same decision is estimated for each of the sub-
graphs and so forth. An example of the obtained partitioning is shown in Figure 4.10. We
can see that smoothest regions have large super-ray and more texture regions as the back-
ground is made of smaller super-rays. We show in Figure 4.11 a typical results obtained
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Figure 4.10: Partitioning results obtained with our solution.

by our proposed partitioning. We can see that our proposed method clearly outperforms
the fixed-size super-rays as proposed in Section 4.2.2. As shown by the blue and yellow
curves, this gain is both due to the coarsening and a rate-distortion optimized partitioning.

Figure 4.11: Rate-distortion comparison.

(J28) M. Rizkallah, T. Maugey, C. Guillemot Rate-Distortion Optimized Graph
Coarsening and Partitioning for Light Field Coding, submitted to IEEE
Transactions on Image Processing in IEEE Transactions on Image pro-
cessing, vol. 29, pp. 3282 – 3295, Dec. 2019.

4.5 Conclusion

In this Chapter, we have proposed methods to compute the graph-based transform for
high dimension data. In particular, we have proposed three approaches: graph segmen-
tation, graph factorization and graph reduction. In all three cases, we have posed the
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problem such that an optimal solution could be estimated. We have finally applied this to
the coding of light field or 360◦ images. In particular, results show that partitioning and
coarsening are two complementary strategies. When put in a global rate-distortion opti-
mization solution, they are able to both bring coding gain. Coarsening reduces the image
for large smooth areas, and partitioning handle the highly textured regions by following
the object contours.



Chapter 5

Conclusion and Perspectives

The work presented in this manuscript has been realized when I was postdoctoral re-
searcher at EPFL (between 2010 and 2014) and, later, research scientist at Inria (after
2014). An important part of these contributions has been done in the context of two PhD
thesis co-supervisions:

F Mira Rizkallah, Graph based transforms for compression of new imaging modalities, (PhD
2016-2019, co-supervised with Christine Guillemot)

F Navid Mahmoudian Bidgoli, Compression for interactive communications of visual con-
tents, (PhD 2016-2019, co-supervised with Aline Roumy)

I would like to take the opportunity of these few lines to deeply thank these two excellent
students for their involvement.
In all contributions described above, we have started with the identification of some sce-
narios in which the conventional coding architecture was limited, i.e., random access or
irregular topologies. Then, we have identified and formalized the associated scientific
problems. We have then proposed methodological answers to solve them. In the case of
random access, we have even provided a theoretical study setting the performance that
could be expected. Finally, we have, each time, proposed a practical coding solution to
demonstrate the efficiency of the proposed methodology. Going ”from the theory to prac-
tice” enabled us to have a good overview of the problem, and to propose solutions that
were at the same time efficient and practical.

In the following, I introduce the perspective works, that I have started or that I plan to
conduct with the same research methodology. These 5 research axes are ranked from the
most short-term to the most prospective.

5.1 Disseminate the work on interactive coding

In the work presented in Chapter 2, we have built the proof-of-concept of an interactive
video coder, that is able to reach the theoretical performance promised in our theoretical
study, namely, no extra transmission cost and a low storage overhead. Despite the great
promise of this results, we are aware about the revolution it brings to the whole coding ar-
chitecture, and about the difficulty to include such solution rapidly in a real standard. In
order to facilitate the extension and the reuse of our proof-of-concept, we have launched
a project, called ICOV (Interactive Coder for Omnidirectional video)1 that aims at devel-
oping a clean open-source version of our codec. The goal is to have a robust, clear and

1https://project.inria.fr/icov/

67
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transferable implementation such that researchers or industrial can reuse it. This project
is done in the context of the supervision of:

F Sébastien Bellenous, ICOV transfer project, (Research Engineer 2020-2022).
Besides, the work conducted in Chapter 2, has led us to highlight the importance of

saving storage size in a streaming applications, which is often overlook in the literature.
With that goal in mind, we are working with the company Mediakind to explore new light
video representations to be stored on the server, in the context of video streaming (sort of
a random access, where the requests correspond to the different bandwidth conditions).
This project is done in the context of the co-supervision of:

F Reda Kaafarani, Optimization of Multi-profiles encoding systems, (PhD 2021-2024, co-
supervised with Aline Roumy, Mederic Blestel and Michael Ropert).

5.2 Multi-view 360 view synthesis

In the context of interactive coding or graph-based representations, we have been led to
study 360◦ images in depth. This type of data enables a user to change his angle of view,
interacting with 3 degrees of freedom: yaw, roll and pitch. Clearly providing the sensation
of being inside the scene, spherical imaging has thus been seen as the corner stone of
immersive multimedia. However, ultimate free navigation in a scene is achieved when a
translation t over x, y and z is additionally possible, which is not the case with a simple
omnidirectional capture. This is the reason why, we have investigated the possibility of
performing multi-view 360◦ capture. As it is illustrated in Figure 5.1, such system enables
the user to do translations at sampled positions, i.e.,

t ∈ {δi}0≤i≤N , (5.1)
where the δi are the position of theN cameras. In that case, 6 degrees of freedom are given
to the users, in which 3 of them are discrete. If the number of cameraN is sufficiently large
or the distance between the δi is small, a quite good level of immersion sensation can be
given to the users. In (C40) and on the FTV360 website2, we have shared a dataset that we
built based on multi-view 360◦ acquisition. The shared sequences consist of indoor and
outdoor scenes captured with 40 omnidirectional cameras. The relative positions of the
cameras are also provided.

User is able to make discrete translation in the scene

At every discrete camera position, the user is able to watch every direction

Figure 5.1: User navigation possibility in a multi-view 360◦ capture system.

Such new acquisition system opens exciting research challenges. The most obvious
and impacting one is the virtual view synthesis. Indeed, having the possibility of gener-
ating virtual spherical images between the positions δi would enable to reach a smooth

2https://project.inria.fr/ftv360/
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free navigation around the 6 degrees of freedom, and thus a total immersion in the scene.
We are currently working on developing such view synthesis algorithm using omnidirec-
tional captured views. This work is done in the context of the co-supervision of:

F Kai Gu, Spherical light field representation and reconstruction from omnidirectional im-
agery, (PhD 2021-2024, co-supervised with Christine Guillemot and Sebastian Knorr).

and has already led to the work published in (C48).

(C48) K. Gu, T. Maugey, S. Knorr, C. Guillemot, Omni-NeRF: Neural Radiance Field
from 360◦ image captures, IEEE ICME, Jul 2022, Taipei, Taiwan

(C40) T. Maugey , L. Guillo, C. Le Cam, FTV360: a Multiview 360-degree Video
Dataset with Calibration Parameters, ACM Multimedia Systems Confer-
ence, Amherst, MA, US, June 2019.
Cited by the OmniCV workshop of CVPR 2020

5.3 Learning on the sphere

In Chapter 3 and 4 of this manuscript, we have proposed to use graph-based signal pro-
cessing tools to handle the non-euclidean topology of spherical data. In particular, we
have investigated how to define and use graph-based transforms. In order to go further,
we have studied how more evolved tools such as learning tools could be efficiently defined
directly on the sphere. In that case, we have noticed that the graph-based approach may
be limited because of the isotropic property of the kernel filter that one is able to define
in such context. We have thus investigated an alternative to graph-based approach, for
doing learning on the sphere.

Figure 5.2: The convolution developed in our OSLO toolbox enables to easily translate
a kernel on pseudo-uniform sampling on the sphere. At each position, the number of
neighbors to the central point is constant and a different weight to each neighbor could be
assigned for a high filter expressiveness.

In (J31s), we have proposed a toolbox called OSLO, that uses the properties of HEALPix
uniform sampling of the sphere and redefines the mathematical tools used in deep learn-
ing models for omnidirectional images. In particular, we: i) propose the definition of a
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new convolution operation on the sphere that keeps the high expressiveness and the low
complexity of a classical 2D convolution (see Figure 5.2); ii) adapt standard CNN tech-
niques such as stride, iterative aggregation, and pixel shuffling to the spherical domain;
and then iii) apply our new framework to the task of omnidirectional image compres-
sion. Our experiments show that our proposed on-the-sphere solution leads to a better
compression gain that can save 13.7% of the bit rate compared to similar learned models
applied to equirectangular images. Also, compared to learning models based on graph
convolutional networks, our solution supports more expressive filters that can preserve
high frequencies and provide a better perceptual quality of the compressed images.

Such results demonstrate the efficiency of the proposed framework, which opens new
research venues for other omnidirectional vision tasks to be effectively implemented on
the sphere manifold, such as classification, segmentation, etc. On top of these different
research directions, we are also working on the transfer of such technology to the industry,
in the context of a start-up creation. The project Anax is lead by Navid Mahmoudian-
Bidgoli and Simon Evain, and aims at using on-the-sphere AI technology for 360◦ video
editing, and more particularly for building remote virtual tour. The Anax start-up project
is currently funded by Inria Start up Studio incubator. I am involved as scientific advisor
with Aline Roumy.

(J31s) N. Mahmoudian Bidgoli, R. Azevedo, T. Maugey, A. Roumy, P.
Frossard, OSLO: On-the-Sphere Learning for Omnidirectional images and
its application to 360-degree image compression, submitted to IEEE Trans-
actions on Image Processing

5.4 Coding for Machines

ML Encoder f

ML Decoder gm

ML Decoder gh

Transmission

over channel

Machine

QoE metrics

Human

Task-oriented metrics

Figure 5.3: In the coding for machine scenario, the compressed and uncompressed data
is not only watched, but also processed by algorithms.

While the perspectives drawn previously were in the continuation of the work pre-
sented in this manuscript, I present now two prospective research topics that tackle an-
other limitations of the conventional coding architecture: its dependence to the fidelity
metric. Indeed, as stated in Figure 1.1, the conventional architecture evaluates the qual-
ity of its compression as its ability to retrieve a decoded image/video that is as close as
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possible to the input. However, with the explosion of data creation nowadays, the visual
content that is created is not necessarily meant to be watched by a user. As illustrated
in Figure 5.3, the decoded data may be processed by an algorithm for some given tasks
(classification, segmentation, etc.).

This change of paradigm opens several interesting research questions such as, is there
a trade-off between accuracy of the processing algorithm and the visual quality ? Is a
conventional architecture optimal for task-oriented metrics ? Can a learning algorithm
operate in the compressed domain (or must we consider a decoder) ? We will investigate
those questions in the context of the following PhD thesis that I co-supervise:

F Rémi Piau, Video coding for learning: video content analysis in the compressed domain,
(PhD 2021-2024, co-supervised with Aline Roumy).

5.5 Data Repurposing

The limitation of the fidelity metric involved in conventional architectures can be seen un-
der an other angle. This is what I develop in this other perspective research axis.

The era of data explosion we live in has led to cutting edge findings in big data analysis
and deep learning algorithms but at an expensive cost in terms of data storage. Storage
growth is exceeding even the highest estimates with no sign of it slowing down anytime
soon: 2.5 quintillion bytes of data are created each day at our current pace [115], and it will
only accelerate with the advent of IoTs, volumetric videos, and new sensors. The storage
burden has been partially alleviated by state-of-the-art compression algorithms, which
can substantially reduce the amount of bits needed to store one or multiple sources, e.g.,
end-to-end learning-based image compression algorithms to minimize the compression
rate [116], MPEG standards to ensure exploitation of spatial and temporal correlation
[117], joint source compression [118, 119, 120, 121]. All these coding strategies have led
to impressive compression ratio, which however will be scaling always with the number
of sources. However, to contain the upcoming avalanche of data, there is the need for
a much drastic compression rate, which cannot be reached till the ultimate goal of the
compression algorithm is to represent each original source with high fidelity.

In this future work entitled Data Repurposing, we aim at addressing this challenge by
proposing a new paradigm-shift for compression algorithm aimed instead at preserving
a global information perceived by the final user. We define this information as perceived
information (PI). Sources should be compressed in such a way that the information of inter-
est for the final user − rather than per source information − is preserved.

Data collection sampling: In (J26), we proposed a first solution in the case of the en-
coder being a sampling algorithm. To achieve this goal, we first introduce the PI metric
as the volume spanned by the sources features in a personalized latent space, i.e., feature
domain distorted by the user preferences. Then, we formalize our PI-based compression
problem as a selection of the subset of sources that maximizes PI under sample size con-
straints and we propose an adaptive sampling algorithm to solve it. The latter selects for
each user a subset of sources, which is the most representative of the original database, in
terms of features most preferable by the user. Finally, we evaluate the performance of the
proposed algorithm via simulation results, proving its gain against baseline algorithms
taking into account user’s preference or source redundancy disjointly. In particular, we
show that our algorithm balances features-perceived quality (how relevant each feature is
to the user) and features-diversity (how well features are represented within the selected
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subsect).
We are extending such theoretical study to real image collection. This includes to build
a proper latent representation for images, and model the user’s preferences. This work is
done in the context of the supervision of:

F Anju J. Tom, Data collection sampling, (Postdoc 2020-2022).

Generative compression: In a second axis of the Data Repurposing project, we inves-
tigate how to semantically describe the database information in a concise representation,
thus leading to drastic compression ratios exactly as a music score is able to describe, for ex-
ample, a concert in a compact and reusable form. This enables the compression to withdraw
tremendous amount of useless, or at least not essential, information while condensing
the important information into a compact recycled signal. From this data collection digest
form, the decoder generates (i.e., invents) a content, coherent with the described semantic.
For this task, guided GAN architectures can be used [122, 123]. The decoded signals target
subjective exhaustiveness of the information description, rather than fidelity to the input
data, as in the traditional compression algorithms. Naturally, not all the visual content
is meant to be regenerated. Users might be willing to retrieve faithfully the content after
decompression. Such approaches will therefore be designed according to user’s profile
taking into account their choice and interaction (as depicted in Figure 5.4). This is a com-
plete change of paradigm for image and video compression, which must enable gigantic
compression gains. This work will be conducted in the context of two PhD supervisions:

F Tom Bachard, Generative compression of image collection, (PhD 2021-2024).
F Tom Bordin, Generative video compression, (PhD 2022-2025).

Figure 5.4: Generative compression framework, in which part of the image/video content
is regenerated at the decoder.
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Data streaming energy cost estimation

The well-known rebound effect or Jevon’s paradox states that as technological improvements
increase the efficiency with which a resource is employed, the total consumption of that
resource may increase rather than decrease. In the particular case of video compression,
this statement is more than confirmed. As the video compression has improved its effi-
ciency, the streaming cost of a single video has been drastically reduced. However, this
has lead to an explosion of the video streaming usage in our every day life. As Data Repur-
posing aims at reducing the energy cost spent to process and store the exploding amount
of data, such rebound effect should be avoided. This can be done by increasing the user’s
awareness. We would like to provide an online simulator of video streaming cost. In a
nutshell, a user will be able to design a streaming strategy (or load a predefined template
corresponding to existing schemes) and to calculate the corresponding energy cost. This
work will be done in the context of the supervision of:

F Sébastien Bellenous, Video streaming energy cost estimation, (Research Engineer, 2022-
2024).

(J26) T. Maugey, L. Toni, Large Database Compression Based on Perceived Informa-
tion, in IEEE Signal Processing Letters, vol. 7, pp 1735–1739, Sep. 2020
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M. Krivokuća, S. Lasserre, Z. Li et al., “Emerging mpeg standards for point cloud
compression,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 9, no. 1, pp. 133–148, 2018.

[87] Y. Ye, J. M. Boyce, and P. Hanhart, “Omnidirectional 360° video coding technology
in responses to the joint call for proposals on video compression with capability
beyond hevc,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30,
no. 5, pp. 1241–1252, 2019.

[88] M. Wien, J. M. Boyce, T. Stockhammer, and W.-H. Peng, “Standardization status of
immersive video coding,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 9, no. 1, pp. 5–17, 2019.

[89] P. Schelkens, P. Astola, E. A. Da Silva, C. Pagliari, C. Perra, I. Tabus, and O. Watan-
abe, “Jpeg pleno light field coding technologies,” in Applications of Digital Image
Processing XLII, vol. 11137. International Society for Optics and Photonics, 2019,
p. 111371G.

[90] W. Hu, J. Pang, X. Liu, D. Tian, C.-W. Lin, and A. Vetro, “Graph signal process-
ing for geometric data and beyond: Theory and applications,” IEEE Transactions on
Multimedia, 2021.

[91] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains,” IEEE Signal Processing Magazine,
vol. 30, no. 3, pp. 83–98, 2013.

[92] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, “Graph spectral image processing,”
Proceedings of the IEEE, vol. 106, no. 5, pp. 907–930, May 2018.

[93] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory
to Algorithms. USA: Cambridge University Press, 2014.

[94] R. Schnabel and R. Klein, “Octree-based point-cloud compression.” Spbg, vol. 6, pp.
111–120, 2006.

[95] C. Zhang, D. Florencio, and C. Loop, “Point cloud attribute compression with graph
transform,” in 2014 IEEE International Conference on Image Processing (ICIP), Oct
2014, pp. 2066–2070.

[96] R. L. de Queiroz and P. A. Chou, “Transform coding for point clouds using a gaus-
sian process model,” IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3507–
3517, July 2017.

[97] R. A. Cohen, D. Tian, and A. Vetro, “Attribute compression for sparse point clouds
using graph transforms,” in 2016 IEEE International Conference on Image Processing
(ICIP). IEEE, 2016, pp. 1374–1378.

[98] Y. Shen, C. Feng, Y. Yang, and D. Tian, “Neighbors do help: Deeply exploiting local
structures of point clouds,” arXiv preprint arXiv:1712.06760, vol. 1, no. 2, 2017.

[99] Y. Yang, C. Feng, Y. Shen, and D. Tian, “Foldingnet: Point cloud auto-encoder via
deep grid deformation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 206–215.



90 BIBLIOGRAPHY

[100] Z. Chen, Y. Li, and Y. Zhang, “Recent advances in omnidirectional video coding
for virtual reality: Projection and evaluation,” Signal Processing, vol. 146, pp. 66–78,
2018.

[101] K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and
M. Bartelmann, “Healpix: A framework for high-resolution discretization and fast
analysis of data distributed on the sphere,” The Astrophysical Journal, vol. 622, no. 2,
p. 759, 2005.

[102] M. Maitre and M. N. Do, “Depth and depth–color coding using shape-adaptive
wavelets,” Journal of Visual Communication and Image Representation, vol. 21, no. 5-6,
pp. 513–522, 2010.

[103] S. Li and W. Li, “Shape-adaptive discrete wavelet transforms for arbitrarily shaped
visual object coding,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 10, no. 5, pp. 725–743, 2000.

[104] G. Fracastoro, F. Verdoja, M. Grangetto, and E. Magli, “Superpixel-driven graph
transform for image compression,” in 2015 IEEE International Conference on Image
Processing (ICIP). IEEE, 2015, pp. 2631–2635.

[105] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions
on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[106] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic superpix-
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