7 research outputs found

    Social analytics for health integration, intelligence, and monitoring

    Get PDF
    Nowadays, patient-generated social health data are abundant and Healthcare is changing from the authoritative provider-centric model to collaborative and patient-oriented care. The aim of this dissertation is to provide a Social Health Analytics framework to utilize social data to solve the interdisciplinary research challenges of Big Data Science and Health Informatics. Specific research issues and objectives are described below. The first objective is semantic integration of heterogeneous health data sources, which can vary from structured to unstructured and include patient-generated social data as well as authoritative data. An information seeker has to spend time selecting information from many websites and integrating it into a coherent mental model. An integrated health data model is designed to allow accommodating data features from different sources. The model utilizes semantic linked data for lightweight integration and allows a set of analytics and inferences over data sources. A prototype analytical and reasoning tool called “Social InfoButtons” that can be linked from existing EHR systems is developed to allow doctors to understand and take into consideration the behaviors, patterns or trends of patients’ healthcare practices during a patient’s care. The tool can also shed insights for public health officials to make better-informed policy decisions. The second objective is near-real time monitoring of disease outbreaks using social media. The research for epidemics detection based on search query terms entered by millions of users is limited by the fact that query terms are not easily accessible by non-affiliated researchers. Publically available Twitter data is exploited to develop the Epidemics Outbreak and Spread Detection System (EOSDS). EOSDS provides four visual analytics tools for monitoring epidemics, i.e., Instance Map, Distribution Map, Filter Map, and Sentiment Trend to investigate public health threats in space and time. The third objective is to capture, analyze and quantify public health concerns through sentiment classifications on Twitter data. For traditional public health surveillance systems, it is hard to detect and monitor health related concerns and changes in public attitudes to health-related issues, due to their expenses and significant time delays. A two-step sentiment classification model is built to measure the concern. In the first step, Personal tweets are distinguished from Non-Personal tweets. In the second step, Personal Negative tweets are further separated from Personal Non-Negative tweets. In the proposed classification, training data is labeled by an emotion-oriented, clue-based method, and three Machine Learning models are trained and tested. Measure of Concern (MOC) is computed based on the number of Personal Negative sentiment tweets. A timeline trend of the MOC is also generated to monitor public concern levels, which is important for health emergency resource allocations and policy making. The fourth objective is predicting medical condition incidence and progression trajectories by using patients’ self-reported data on PatientsLikeMe. Some medical conditions are correlated with each other to a measureable degree (“comorbidities”). A prediction model is provided to predict the comorbidities and rank future conditions by their likelihood and to predict the possible progression trajectories given an observed medical condition. The novel models for trajectory prediction of medical conditions are validated to cover the comorbidities reported in the medical literature

    Applying Multiple Data Collection Tools to Quantify Human Papillomavirus Vaccine Communication on Twitter.

    Get PDF
    BACKGROUND: Human papillomavirus (HPV) is the most common sexually transmitted infection in the United States. There are several vaccines that protect against strains of HPV most associated with cervical and other cancers. Thus, HPV vaccination has become an important component of adolescent preventive health care. As media evolves, more information about HPV vaccination is shifting to social media platforms such as Twitter. Health information consumed on social media may be especially influential for segments of society such as younger populations, as well as ethnic and racial minorities. OBJECTIVE: The objectives of our study were to quantify HPV vaccine communication on Twitter, and to develop a novel methodology to improve the collection and analysis of Twitter data. METHODS: We collected Twitter data using 10 keywords related to HPV vaccination from August 1, 2014 to July 31, 2015. Prospective data collection used the Twitter Search API and retrospective data collection used Twitter Firehose. Using a codebook to characterize tweet sentiment and content, we coded a subsample of tweets by hand to develop classification models to code the entire sample using machine learning procedures. We also documented the words in the 140-character tweet text most associated with each keyword. We used chi-square tests, analysis of variance, and nonparametric equality of medians to test for significant differences in tweet characteristic by sentiment. RESULTS: A total of 193,379 English-language tweets were collected, classified, and analyzed. Associated words varied with each keyword, with more positive and preventive words associated with HPV vaccine and more negative words associated with name-brand vaccines. Positive sentiment was the largest type of sentiment in the sample, with 75,393 positive tweets (38.99% of the sample), followed by negative sentiment with 48,940 tweets (25.31% of the sample). Positive and neutral tweets constituted the largest percentage of tweets mentioning prevention or protection (20,425/75,393, 27.09% and 6477/25,110, 25.79%, respectively), compared with only 11.5% of negative tweets (5647/48,940; P CONCLUSIONS: Examining social media to detect health trends, as well as to communicate important health information, is a growing area of research in public health. Understanding the content and implications of conversations that form around HPV vaccination on social media can aid health organizations and health-focused Twitter users in creating a meaningful exchange of ideas and in having a significant impact on vaccine uptake. This area of research is inherently interdisciplinary, and this study supports this movement by applying public health, health communication, and data science approaches to extend methodologies across fields

    Real-time processing of social media with SENTINEL: a syndromic surveillance system incorporating deep learning for health classification

    Get PDF
    Interest in real-time syndromic surveillance based on social media data has greatly increased in recent years. The ability to detect disease outbreaks earlier than traditional methods would be highly useful for public health officials. This paper describes a software system which is built upon recent developments in machine learning and data processing to achieve this goal. The system is built from reusable modules integrated into data processing pipelines that are easily deployable and configurable. It applies deep learning to the problem of classifying health-related tweets and is able to do so with high accuracy. It has the capability to detect illness outbreaks from Twitter data and then to build up and display information about these outbreaks, including relevant news articles, to provide situational awareness. It also provides nowcasting functionality of current disease levels from previous clinical data combined with Twitter data. The preliminary results are promising, with the system being able to detect outbreaks of influenza-like illness symptoms which could then be confirmed by existing official sources. The Nowcasting module shows that using social media data can improve prediction for multiple diseases over simply using traditional data sources

    The Evolving Interplay between Social Media and International Health Security: A Point of View

    Get PDF
    Human communication and interaction had been rapidly evolving with the advent and continuing influence of social media (SM) thereby accelerating information exchange and increasing global connectivity. Despite clear advantages, this new technology can present unintended consequences including medical misinformation and “fake news.” Although International Health Security (IHS) stands to benefit tremendously from various SM platforms, high-level decision-makers and other stakeholders must also be aware of the dangers related to its intentional and unintentional misuse (and abuse). An overview of SM utility in fighting disease, disseminating life-saving information, and organizing people and teams in a constructive fashion is discussed herein. The potential negatives associated with SM misuse, including intentional and unintentional misinformation, as well as the ability to organize people in a disruptive fashion, will also be presented. Our treatise will additionally outline how deliberate misinformation may lead to harmful behaviors, public health panics, and orchestrated patterns of distrust. In terms of both its affirmative and destructive considerations, SM can be viewed as an asymmetric influencing force, with observed effects (whether beneficial or harmful) being disproportionately greater than the cost of the intervention

    When Infodemic Meets Epidemic: a Systematic Literature Review

    Full text link
    Epidemics and outbreaks present arduous challenges requiring both individual and communal efforts. Social media offer significant amounts of data that can be leveraged for bio-surveillance. They also provide a platform to quickly and efficiently reach a sizeable percentage of the population, hence their potential impact on various aspects of epidemic mitigation. The general objective of this systematic literature review is to provide a methodical overview of the integration of social media in different epidemic-related contexts. Three research questions were conceptualized for this review, resulting in over 10000 publications collected in the first PRISMA stage, 129 of which were selected for inclusion. A thematic method-oriented synthesis was undertaken and identified 5 main themes related to social media enabled epidemic surveillance, misinformation management, and mental health. Findings uncover a need for more robust applications of the lessons learned from epidemic post-mortem documentation. A vast gap exists between retrospective analysis of epidemic management and result integration in prospective studies. Harnessing the full potential of social media in epidemic related tasks requires streamlining the results of epidemic forecasting, public opinion understanding and misinformation propagation, all while keeping abreast of potential mental health implications. Pro-active prevention has thus become vital for epidemic curtailment and containment

    Multikonferenz Wirtschaftsinformatik (MKWI) 2016: Technische Universität Ilmenau, 09. - 11. März 2016; Band I

    Get PDF
    Übersicht der Teilkonferenzen Band I: • 11. Konferenz Mobilität und Digitalisierung (MMS 2016) • Automated Process und Service Management • Business Intelligence, Analytics und Big Data • Computational Mobility, Transportation and Logistics • CSCW & Social Computing • Cyber-Physische Systeme und digitale Wertschöpfungsnetzwerke • Digitalisierung und Privacy • e-Commerce und e-Business • E-Government – Informations- und Kommunikationstechnologien im öffentlichen Sektor • E-Learning und Lern-Service-Engineering – Entwicklung, Einsatz und Evaluation technikgestützter Lehr-/Lernprozess
    corecore