13,908 research outputs found
Quantum dynamical correlations: Effective potential analytic continuation approach
We propose a new quantum dynamics method called the effective potential
analytic continuation (EPAC) to calculate the real time quantum correlation
functions at finite temperature. The method is based on the effective action
formalism which includes the standard effective potential. The basic notions of
the EPAC are presented for a one-dimensional double well system in comparison
with the centroid molecular dynamics (CMD) and the exact real time quantum
correlation function. It is shown that both the EPAC and the CMD well reproduce
the exact short time behavior, while at longer time their results deviate from
the exact one. The CMD correlation function damps rapidly with time because of
ensemble dephasing. The EPAC correlation function, however, can reproduce the
long time oscillation inherent in the quantum double well systems. It is also
shown that the EPAC correlation function can be improved toward the exact
correlation function by means of the higher order derivative expansion of the
effective action.Comment: RevTeX4, 20 pages, 6 eps figure
Separate roles of PKA and EPAC in renal function unraveled by the optogenetic control of cAMP levels in vivo
Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates a variety of essential processes in diverse cell types, functioning via cAMP-dependent effectors such as protein kinase A (PKA) and/or exchange proteins directly activated by cAMP (EPAC). In an intact tissue it is difficult to separate the contribution of each cAMP effector in a particular cell type using genetic or pharmacological approaches alone. We, therefore, utilized optogenetics to overcome the difficulties associated with examining a multicellular tissue. The transgenic photoactive adenylyl cyclase bPAC can be activated to rapidly and reversibly generate cAMP pulses in a cell-type-specific manner. This optogenetic approach to cAMP manipulation was validated in vivo using GAL4-driven UAS–bPAC in a simple epithelium, the Drosophila renal (Malpighian) tubules. As bPAC was expressed under the control of cell-type-specific promoters, each cAMP signal could be directed to either the stellate or principal cells, the two major cell types of the Drosophila renal tubule. By combining the bPAC transgene with genetic and pharmacological manipulation of either PKA or EPAC it was possible to investigate the functional impact of PKA and EPAC independently of each other. The results of this investigation suggest that both PKA and EPAC are involved in cAMP sensing, but are engaged in very different downstream physiological functions in each cell type: PKA is necessary for basal secretion in principal cells only, and for stimulated fluid secretion in stellate cells only. By contrast, EPAC is important in stimulated fluid secretion in both cell types. We propose that such optogenetic control of cellular cAMP levels can be applied to other systems, for example the heart or the central nervous system, to investigate the physiological impact of cAMP-dependent signaling pathways with unprecedented precision
Effective potential analytic continuation calculations of real time quantum correlation functions: Asymmetric systems
We apply the effective potential analytic continuation (EPAC) method to
one-dimensional asymmetric potential systems to obtain the real time quantum
correlation functions at various temperatures. Comparing the EPAC results with
the exact results, we find that for an asymmetric anharmonic oscillator the
EPAC results are in very good agreement with the exact ones at low temperature,
while this agreement becomes worse as the temperature increases. We also show
that the EPAC calculation for a certain type of asymmetric potentials can be
reduced to that for the corresponding symmetric potentials.Comment: RevTeX4, 13 pages, 9 eps figure
Electron Cloud Observations and Predictions at KEKB, PEP-II and SuperB Factories
Electron cloud observations at B factories, i.e. KEKB and PEP-II, are
reviewed. Predictions of electron cloud effects at Super B factories, i.e.
SuperB and Super KEKB, are also reviewed.Comment: 4 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop
on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba,
Ital
Recommended from our members
PACAP induces FSHβ gene expression via EPAC.
Gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are heterodimers of a common α subunit and unique β subunits. Regulation of their levels, primarily by GnRH, is critical for reproductive function. Several other hormones modulate gonadotropin expression, either independently or by modifying the responsiveness to GnRH. Pituitary adenylate cyclase activating peptide (PACAP) is one such hormone. Four-hour treatment of female mouse primary pituitary cells by either GnRH or PACAP induced FSHβ expression, while 24-h treatment repressed FSHβ. Both PACAP and GnRH caused FSH secretion into the medium. In the gonadotropes, PACAP activates primarily Gαs and increases concentration of cAMP, while GnRH primarily functions via Gαq and increases calcium concentration. Herein, we compared PACAP and GnRH signaling pathways that lead to the induction of FSHβ expression. Interestingly, constitutively active Gαs represses LHβ and induces FSHβ expression, while Gαq induces both β-subunits. We determined that FSHβ induction by PACAP requires functional EPAC, a cAMP sensor protein that serves as a guanine exchange factors for small G proteins that then bridges cAMP signaling to MAPK pathway. We further demonstrate that in addition to the prototypical small G protein Ras, two members of the Rho subfamily, Rac and CDC42 are also necessary for PACAP induction of FSHβ, likely via activation of p38 MAPK that leads to induction of cFOS, a critical transcription factor that is necessary and sufficient for FSHβ induction. Therefore, PACAP-induced cAMP pathway leads to MAPK activation that stimulates cFOS induction, to induce the expression of FSHβ subunit and increase FSH concentration
Cyclic AMP signalling in pancreatic islets
Cyclic 3'5'AMP (cAMP) is an important physiological amplifier of glucose-induced insulin secretion by the pancreatic islet β-cell, where it is formed by the activity of adenylyl cyclases, which are stimulated by glucose, through elevation in intracellular calcium concentrations, and by the incretin hormones (GLP-1 and GIP). cAMP is rapidly degraded in the pancreatic islet β-cell by various cyclic nucleotide phosphodiesterase (PDE) enzymes. Many steps involved in glucose-induced insulin secretion are modulated by cAMP, which is also important in regulating pancreatic islet β-cell differentiation, growth and survival. This chapter discusses the formation, destruction and actions of cAMP in the islets with particular emphasis on the β-cell
Synergistic effect of phosphodiesterase 4 inhibitor and serum on migration of endotoxin-stimulated macrophages.
Macrophage migration is an essential step in host defense against infection and wound healing. Elevation of cAMP by inhibiting phosphodiesterase 4 (PDE4), enzymes that specifically degrade cAMP, is known to suppress various inflammatory responses in activated macrophages, but the role of PDE4 in macrophage migration is poorly understood. Here we show that the migration of Raw 264.7 macrophages stimulated with LPS was markedly and dose-dependently induced by the PDE4 inhibitor rolipram as assessed by scratch wound healing assay. Additionally, this response required the involvement of serum in the culture medium as serum starvation abrogated the effect. Further analysis revealed that rolipram and serum exhibited synergistic effect on the migration, and the influence of serum was independent of PDE4 mRNA expression in LPS-stimulated macrophages. Moreover, the enhanced migration by rolipram was mediated by activating cAMP/exchange proteins directly activated by cAMP (Epac) signaling, presumably via interaction with LPS/TLR4 signaling with the participation of unknown serum components. These results suggest that PDE4 inhibitors, together with serum components, may serve as positive regulators of macrophage recruitment for more efficient pathogen clearance and wound repair
- …
