228,031 research outputs found
Spatio-temporal Modelling of Remote-sensing Lake Surface Water Temperature Data
Remote-sensing technology is widely used in environmental monitoring.
The coverage and resolution of satellite based data provide scientists with
great opportunities to study and understand environmental change. However, the
large volume and the missing observations in the remote-sensing data present
challenges to statistical analysis. This paper investigates two approaches to the
spatio-temporal modelling of remote-sensing lake surface water temperature data.
Both methods use the state space framework, but with different parameterizations
to reflect different aspects of the problem. The appropriateness of the methods
for identifying spatial/temporal patterns in the data is discussed
Use of remote sensing in agriculture
Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated
Application of remote sensing to state and regional problems
The use of remote sensing techniques to help the state of Mississippi recognize and solve its environmental, resource, and socio-economic problems through inventory, analysis, and monitoring is suggested
NASA follow-on to the Bangladesh Agro-Climatic Environmental Monitoring Project
The NASA responsibility and activities for the follow-on to the original Agro-Climatic Environmental Monitoring Project (ACEMP) which was completed during 1987 is described. Five training sessions which comprise the NASA ACEMP follow-on are: Agrometeorology, Meteorology of Severe Storms Using GEMPAK, Satellite Oceanography, Hydrology, and Meteorology with TOVS. The objective of the follow-on is to train Bangladesh Government staff in the use of satellite data for remote sensing applications. This activity also encourages the scientific connection between NASA/Goddard Space Flight Center and The Bangladesh Space and Remote Sensing Organization (SPARRSO)
Commercial Applications Multispectral Sensor System
NASA's Office of Commercial Programs is funding a multispectral sensor system to be used in the development of remote sensing applications. The Airborne Terrestrial Applications Sensor (ATLAS) is designed to provide versatility in acquiring spectral and spatial information. The ATLAS system will be a test bed for the development of specifications for airborne and spaceborne remote sensing instrumentation for dedicated applications. This objective requires spectral coverage from the visible through thermal infrared wavelengths, variable spatial resolution from 2-25 meters; high geometric and geo-location accuracy; on-board radiometric calibration; digital recording; and optimized performance for minimized cost, size, and weight. ATLAS is scheduled to be available in 3rd quarter 1992 for acquisition of data for applications such as environmental monitoring, facilities management, geographic information systems data base development, and mineral exploration
Airborne Visible/Infrared Imaging spectrometer AVIS: Design, characterization and calibration
The Airborne Visible/Infrared imaging Spectrometer AVIS is a hyperspectral imager designed for environmental monitoring purposes. The sensor, which was constructed entirely from commercially available components, has been successfully deployed during several experiments between 1999 and 2007. We describe the instrument design and present the results of laboratory characterization and calibration of the system's second generation, AVIS-2, which is currently being operated. The processing of the data is described and examples of remote sensing reflectance data are presented
Comparison of Growth Curves and Seasonality Parameters of Main Field crops in a High Elevation Mountain Area based on TIMESAT Program
Distributed sensing devices for monitoring marine environment
The lack of affordable, self-sustaining platforms for monitoring marine water quality means that measurements are done primarily through grab sampling at a limited number of locations and time, followed by analysis back at a centralised facility. This has resulted in huge gaps in our knowledge of water quality. This project aims to develop platforms capable of remote sampling and analysis over extended periods of time. This would provide the building blocks for establishing an 'environmental nervous system' comprised of many distributed sensing devices that share their data in near real-time on the web. The envisaged 'environmental nervous system’ allows marine environment to be closely monitored, enabling the early detection of pollution events to minimise the danger to people and contamination of distribution systems
Airborne lidar experiments at the Savannah River Plant
The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed
Remote Sensing of Forest Trends at Mammoth Cave National Park from 2000 to 2011
The influence of climate change and other environmental stressors on the health of midlatitude forests is an important, yet understudied topic for resource managers. Using vegetation indices derived from satellite remote sensing, slight changes in photosynthetic activity can be detected at the spatial scales needed for long-term forest monitoring. This study used remote sensing and geographic information systems to track the photosynthetic activity within Mammoth Cave National Park from 2000 to 2011. Relationships are examined between climate variables and the vegetation indices for the forest as a whole and at selected areas within the park
- …
