71,835 research outputs found

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    Energy and Smart Growth: It's about How and Where We Build

    Get PDF
    By efficiently locating development, smarter growth land use policies and practices offer a viable way to reduce U.S. energy consumption. Moreover, by increasing attention on how we build, in addition to where we build, smart growth could become even more energy smart. The smart growth and energy efficiency movements thus are intrinsically linked, yet these two fields have mostly operated in separate worlds. Through greater use of energy efficient design, and renewable energy resources, the smart growth movement could better achieve its goals of environmental protection, economic security and prosperity, and community livability. In short, green building and smart growth should go hand in hand. Heightened concern about foreign oil dependence, climate change, and other ill effects of fossil fuel usage makes the energy-smart growth collaboration especially important. Strengthening this collaboration will involve overcoming some hurdles, however, and funders can play an important role in assisting these movements to gain strength from each other. This paper contends there is much to be gained by expanding the smart growth movement to include greater attention on energy. It provides a brief background on current energy trends and programs, relevant to smart growth. It then presents a framework for understanding the connections between energy and land use which focuses on two primary issues: how to build, which involves neighborhood and building design, and where to build, meaning that location matters. The final section offers suggestions to funders interesting in helping accelerate the merger of these fields
    • …
    corecore