9 research outputs found

    Quasi-Cyclic Asymptotically Regular LDPC Codes

    Full text link
    Families of "asymptotically regular" LDPC block code ensembles can be formed by terminating (J,K)-regular protograph-based LDPC convolutional codes. By varying the termination length, we obtain a large selection of LDPC block code ensembles with varying code rates, minimum distance that grows linearly with block length, and capacity approaching iterative decoding thresholds, despite the fact that the terminated ensembles are almost regular. In this paper, we investigate the properties of the quasi-cyclic (QC) members of such an ensemble. We show that an upper bound on the minimum Hamming distance of members of the QC sub-ensemble can be improved by careful choice of the component protographs used in the code construction. Further, we show that the upper bound on the minimum distance can be improved by using arrays of circulants in a graph cover of the protograph.Comment: To be presented at the 2010 IEEE Information Theory Workshop, Dublin, Irelan

    Asymptotically Good LDPC Convolutional Codes Based on Protographs

    Full text link
    LDPC convolutional codes have been shown to be capable of achieving the same capacity-approaching performance as LDPC block codes with iterative message-passing decoding. In this paper, asymptotic methods are used to calculate a lower bound on the free distance for several ensembles of asymptotically good protograph-based LDPC convolutional codes. Further, we show that the free distance to constraint length ratio of the LDPC convolutional codes exceeds the minimum distance to block length ratio of corresponding LDPC block codes.Comment: Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, July 6 - 11, 200

    Rate-compatible protograph LDPC code families with linear minimum distance

    Get PDF
    Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all having the linear minimum distance property, and structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all having the linear minimum distance property, and structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds, and families of such codes of different rates can be decoded efficiently using a common decoding architecture

    Spatially Coupled LDPC Codes Constructed from Protographs

    Full text link
    In this paper, we construct protograph-based spatially coupled low-density parity-check (SC-LDPC) codes by coupling together a series of L disjoint, or uncoupled, LDPC code Tanner graphs into a single coupled chain. By varying L, we obtain a flexible family of code ensembles with varying rates and frame lengths that can share the same encoding and decoding architecture for arbitrary L. We demonstrate that the resulting codes combine the best features of optimized irregular and regular codes in one design: capacity approaching iterative belief propagation (BP) decoding thresholds and linear growth of minimum distance with block length. In particular, we show that, for sufficiently large L, the BP thresholds on both the binary erasure channel (BEC) and the binary-input additive white Gaussian noise channel (AWGNC) saturate to a particular value significantly better than the BP decoding threshold and numerically indistinguishable from the optimal maximum a-posteriori (MAP) decoding threshold of the uncoupled LDPC code. When all variable nodes in the coupled chain have degree greater than two, asymptotically the error probability converges at least doubly exponentially with decoding iterations and we obtain sequences of asymptotically good LDPC codes with fast convergence rates and BP thresholds close to the Shannon limit. Further, the gap to capacity decreases as the density of the graph increases, opening up a new way to construct capacity achieving codes on memoryless binary-input symmetric-output (MBS) channels with low-complexity BP decoding.Comment: Submitted to the IEEE Transactions on Information Theor

    Topologically Driven Methods for Construction Of Multi-Edge Type (Multigraph with nodes puncturing) Quasi-Cyclic Low-density Parity-check Codes for Wireless Channel, WDM Long-Haul and Archival Holographic Memory

    Full text link
    In this Phd thesis discusses modern methods for constructing MET QC-LDPC codes with a given error correction ("waterfall, error-floor") and complexity (parallelism level according circulant size plus scheduler orthogonality of checks) profiles: 1. weight enumerators optimization, protograph construction using Density Evolution, MI (P/Exit-chart) and it approximation: Gaussian Approximation, Reciprocal-channel approximation and etc; 2. Covariance evolution and it approximation; 3. Lifting methods for QC codes construction:PEG, Guest-and-Test, Hill-Climbing with girth, EMD, ACE optimization; 4. Upper and lower bounds on code distance estimation and its parallel implementation using CPU/GPU; 5. Brouwer-Zimmerman and Number Geometry code distance estimation methods; 6. Importance Sampling for error-floor estimation; 7. Length and rate adaption methods for QC codes based on cyclic group decomposition; 8. Methods for interaction screening which allow to improve performance (decorrelate variables) under BP and it's approximation. We proposed several state-of-the-art methods: Simulated Annealing lifting for MET QC-LDPC codes construction; fast EMD and code distance estimation; floor scale modular lifting for lenght adaption; fast finite-length covariance evolution rate penalty from threshold for code construction and it hardware friendly compression for fast decoder's LLRs unbiasing due SNR's estimation error. We found topology reason's of efficient of such methods using topology thickening (homotopy of continuous and discrete curvature) under matched metric space which allow to generalize this idea to a class of nonlinear codes for Signal Processing and Machine Learning. Using the proposed algorithms several generations of WDM Long-Haul error-correction codes were built. It was applied for "5G eMBB" 3GPP TS38.212 and other applications like Flash storage, Compressed sensing measurement matrix.Comment: Phd Thesis, 176 pages, in Russian, 62 pictures, 13 tables, 5 appendix including links to binary and source code

    Enumerators for protograph ensembles of LDPC codes

    No full text
    This paper considers the problem of finding average enumerators for the class of protograph ensembles, which are related in a certain way to quasi-cyclic codes. Our methods, which are necessarily different from those used to compute enumerators for classical irregular ensembles, can be applied to both codeword and stopping set weight enumerators. The method divides codewords into types based on their partial weight enumerator. For each type, an exponent can be computed for the average number of codewords of that type. Maximizing over types of fixed average weight gives the average enumerator which we seek. Although this maximization step is in general difficult because of non-unique local maxima, we can compute it for simple cases. We show that certain ensembles exist which have a linearly growing minimum distance with high probability, while others have at most sublinearly growing minimum distance with high probability
    corecore