25 research outputs found

    Enumerating contingency tables via random permanents

    Full text link
    Given m positive integers R=(r_i), n positive integers C=(c_j) such that sum r_i = sum c_j =N, and mn non-negative weights W=(w_{ij}), we consider the total weight T=T(R, C; W) of non-negative integer matrices (contingency tables) D=(d_{ij}) with the row sums r_i, column sums c_j, and the weight of D equal to prod w_{ij}^{d_{ij}}. We present a randomized algorithm of a polynomial in N complexity which computes a number T'=T'(R,C; W) such that T' < T < alpha(R, C) T' where alpha(R,C) = min{prod r_i! r_i^{-r_i}, prod c_j! c_j^{-c_j}} N^N/N!. In many cases, ln T' provides an asymptotically accurate estimate of ln T. The idea of the algorithm is to express T as the expectation of the permanent of an N x N random matrix with exponentially distributed entries and approximate the expectation by the integral T' of an efficiently computable log-concave function on R^{mn}. Applications to counting integer flows in graphs are also discussed.Comment: 19 pages, bounds are sharpened, references are adde

    Notes on the proof of the van der Waerden permanent conjecture

    Get PDF
    The permanent of an n×nn\times n matrix A=(aij)A=(a_{i j}) with real entries is defined by the sum σSni=1naiσ(i)\sum_{\sigma \in S_n} \prod_{i=1}^{n} a_{i \sigma(i)} where SnS_n denotes the symmetric group on the nn-element set {1,2,,n}\{1,2,\dots,n\}. In this creative component we survey some known properties of permanents, calculation of permanents for particular types of matrices and their applications in combinatorics and linear algebra. Then we follow the lines of van Lint\u27s exposition of Egorychev\u27s proof for the van der Waerden\u27s conjecture on the permanents of doubly stochastic matrices. The purpose of this component is to provide elementary proofs of several interesting known facts related to permanents of some special matrices. It is an expository survey paper in nature and reports no new findings

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group

    Computing solution space properties of combinatorial optimization problems via generic tensor networks

    Full text link
    We introduce a unified framework to compute the solution space properties of a broad class of combinatorial optimization problems. These properties include finding one of the optimum solutions, counting the number of solutions of a given size, and enumeration and sampling of solutions of a given size. Using the independent set problem as an example, we show how all these solution space properties can be computed in the unified approach of generic tensor networks. We demonstrate the versatility of this computational tool by applying it to several examples, including computing the entropy constant for hardcore lattice gases, studying the overlap gap properties, and analyzing the performance of quantum and classical algorithms for finding maximum independent sets.Comment: Github repo: https://github.com/QuEraComputing/GenericTensorNetworks.j

    Author index for volumes 101–200

    Get PDF
    corecore