633 research outputs found

    Flat Zipper-Unfolding Pairs for Platonic Solids

    Get PDF
    We show that four of the five Platonic solids' surfaces may be cut open with a Hamiltonian path along edges and unfolded to a polygonal net each of which can "zipper-refold" to a flat doubly covered parallelogram, forming a rather compact representation of the surface. Thus these regular polyhedra have particular flat "zipper pairs." No such zipper pair exists for a dodecahedron, whose Hamiltonian unfoldings are "zip-rigid." This report is primarily an inventory of the possibilities, and raises more questions than it answers.Comment: 15 pages, 14 figures, 8 references. v2: Added one new figure. v3: Replaced Fig. 13 to remove a duplicate unfolding, reducing from 21 to 20 the distinct unfoldings. v4: Replaced Fig. 13 again, 18 distinct unfolding

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Sturm 3-ball global attractors 3: Examples of Thom-Smale complexes

    Full text link
    Examples complete our trilogy on the geometric and combinatorial characterization of global Sturm attractors A\mathcal{A} which consist of a single closed 3-ball. The underlying scalar PDE is parabolic, ut=uxx+f(x,u,ux) , u_t = u_{xx} + f(x,u,u_x)\,, on the unit interval 0<x<10 < x<1 with Neumann boundary conditions. Equilibria vt=0v_t=0 are assumed to be hyperbolic. Geometrically, we study the resulting Thom-Smale dynamic complex with cells defined by the fast unstable manifolds of the equilibria. The Thom-Smale complex turns out to be a regular cell complex. In the first two papers we characterized 3-ball Sturm attractors A\mathcal{A} as 3-cell templates C\mathcal{C}. The characterization involves bipolar orientations and hemisphere decompositions which are closely related to the geometry of the fast unstable manifolds. An equivalent combinatorial description was given in terms of the Sturm permutation, alias the meander properties of the shooting curve for the equilibrium ODE boundary value problem. It involves the relative positioning of extreme 2-dimensionally unstable equilibria at the Neumann boundaries x=0x=0 and x=1x=1, respectively, and the overlapping reach of polar serpents in the shooting meander. In the present paper we apply these descriptions to explicitly enumerate all 3-ball Sturm attractors A\mathcal{A} with at most 13 equilibria. We also give complete lists of all possibilities to obtain solid tetrahedra, cubes, and octahedra as 3-ball Sturm attractors with 15 and 27 equilibria, respectively. For the remaining Platonic 3-balls, icosahedra and dodecahedra, we indicate a reduction to mere planar considerations as discussed in our previous trilogy on planar Sturm attractors.Comment: 73+(ii) pages, 40 figures, 14 table; see also parts 1 and 2 under arxiv:1611.02003 and arxiv:1704.0034
    • …
    corecore