3 research outputs found

    Faster Binary Mean Computation Under Dynamic Time Warping

    Get PDF
    Many consensus string problems are based on Hamming distance. We replace Hamming distance by the more flexible (e.g., easily coping with different input string lengths) dynamic time warping distance, best known from applications in time series mining. Doing so, we study the problem of finding a mean string that minimizes the sum of (squared) dynamic time warping distances to a given set of input strings. While this problem is known to be NP-hard (even for strings over a three-element alphabet), we address the binary alphabet case which is known to be polynomial-time solvable. We significantly improve on a previously known algorithm in terms of worst-case running time. Moreover, we also show the practical usefulness of one of our algorithms in experiments with real-world and synthetic data. Finally, we identify special cases solvable in linear time (e.g., finding a mean of only two binary input strings) and report some empirical findings concerning combinatorial properties of optimal means

    Parameterized Algorithms for Matrix Completion with Radius Constraints

    Get PDF
    Considering matrices with missing entries, we study NP-hard matrix completion problems where the resulting completed matrix should have limited (local) radius. In the pure radius version, this means that the goal is to fill in the entries such that there exists a "center string" which has Hamming distance to all matrix rows as small as possible. In stringology, this problem is also known as Closest String with Wildcards. In the local radius version, the requested center string must be one of the rows of the completed matrix. Hermelin and Rozenberg [CPM 2014, TCS 2016] performed a parameterized complexity analysis for Closest String with Wildcards. We answer one of their open questions, fix a bug concerning a fixed-parameter tractability result in their work, and improve some running time upper bounds. For the local radius case, we reveal a computational complexity dichotomy. In general, our results indicate that, although being NP-hard as well, this variant often allows for faster (fixed-parameter) algorithms

    Parameterized Enumeration of Neighbour Strings and Kemeny Aggregations

    Get PDF
    In this thesis, we consider approaches to enumeration problems in the parameterized complexity setting. We obtain competitive parameterized algorithms to enumerate all, as well as several of, the solutions for two related problems Neighbour String and Kemeny Rank Aggregation. In both problems, the goal is to find a solution that is as close as possible to a set of inputs (strings and total orders, respectively) according to some distance measure. We also introduce a notion of enumerative kernels for which there is a bijection between solutions to the original instance and solutions to the kernel, and provide such a kernel for Kemeny Rank Aggregation, improving a previous kernel for the problem. We demonstrate how several of the algorithms and notions discussed in this thesis are extensible to a group of parameterized problems, improving published results for some other problems
    corecore