8,702 research outputs found

    Universal Lossless Compression with Unknown Alphabets - The Average Case

    Full text link
    Universal compression of patterns of sequences generated by independently identically distributed (i.i.d.) sources with unknown, possibly large, alphabets is investigated. A pattern is a sequence of indices that contains all consecutive indices in increasing order of first occurrence. If the alphabet of a source that generated a sequence is unknown, the inevitable cost of coding the unknown alphabet symbols can be exploited to create the pattern of the sequence. This pattern can in turn be compressed by itself. It is shown that if the alphabet size kk is essentially small, then the average minimax and maximin redundancies as well as the redundancy of every code for almost every source, when compressing a pattern, consist of at least 0.5 log(n/k^3) bits per each unknown probability parameter, and if all alphabet letters are likely to occur, there exist codes whose redundancy is at most 0.5 log(n/k^2) bits per each unknown probability parameter, where n is the length of the data sequences. Otherwise, if the alphabet is large, these redundancies are essentially at least O(n^{-2/3}) bits per symbol, and there exist codes that achieve redundancy of essentially O(n^{-1/2}) bits per symbol. Two sub-optimal low-complexity sequential algorithms for compression of patterns are presented and their description lengths analyzed, also pointing out that the pattern average universal description length can decrease below the underlying i.i.d.\ entropy for large enough alphabets.Comment: Revised for IEEE Transactions on Information Theor

    Barrier Frank-Wolfe for Marginal Inference

    Full text link
    We introduce a globally-convergent algorithm for optimizing the tree-reweighted (TRW) variational objective over the marginal polytope. The algorithm is based on the conditional gradient method (Frank-Wolfe) and moves pseudomarginals within the marginal polytope through repeated maximum a posteriori (MAP) calls. This modular structure enables us to leverage black-box MAP solvers (both exact and approximate) for variational inference, and obtains more accurate results than tree-reweighted algorithms that optimize over the local consistency relaxation. Theoretically, we bound the sub-optimality for the proposed algorithm despite the TRW objective having unbounded gradients at the boundary of the marginal polytope. Empirically, we demonstrate the increased quality of results found by tightening the relaxation over the marginal polytope as well as the spanning tree polytope on synthetic and real-world instances.Comment: 25 pages, 12 figures, To appear in Neural Information Processing Systems (NIPS) 2015, Corrected reference and cleaned up bibliograph
    • …
    corecore