We introduce a globally-convergent algorithm for optimizing the
tree-reweighted (TRW) variational objective over the marginal polytope. The
algorithm is based on the conditional gradient method (Frank-Wolfe) and moves
pseudomarginals within the marginal polytope through repeated maximum a
posteriori (MAP) calls. This modular structure enables us to leverage black-box
MAP solvers (both exact and approximate) for variational inference, and obtains
more accurate results than tree-reweighted algorithms that optimize over the
local consistency relaxation. Theoretically, we bound the sub-optimality for
the proposed algorithm despite the TRW objective having unbounded gradients at
the boundary of the marginal polytope. Empirically, we demonstrate the
increased quality of results found by tightening the relaxation over the
marginal polytope as well as the spanning tree polytope on synthetic and
real-world instances.Comment: 25 pages, 12 figures, To appear in Neural Information Processing
Systems (NIPS) 2015, Corrected reference and cleaned up bibliograph