9,072 research outputs found

    Analyzing First-Person Stories Based on Socializing, Eating and Sedentary Patterns

    Full text link
    First-person stories can be analyzed by means of egocentric pictures acquired throughout the whole active day with wearable cameras. This manuscript presents an egocentric dataset with more than 45,000 pictures from four people in different environments such as working or studying. All the images were manually labeled to identify three patterns of interest regarding people's lifestyle: socializing, eating and sedentary. Additionally, two different approaches are proposed to classify egocentric images into one of the 12 target categories defined to characterize these three patterns. The approaches are based on machine learning and deep learning techniques, including traditional classifiers and state-of-art convolutional neural networks. The experimental results obtained when applying these methods to the egocentric dataset demonstrated their adequacy for the problem at hand.Comment: Accepted at First International Workshop on Social Signal Processing and Beyond, 19th International Conference on Image Analysis and Processing (ICIAP), September 201

    Analyzing First-Person Stories Based on Socializing, Eating and Sedentary Patterns

    Full text link
    First-person stories can be analyzed by means of egocentric pictures acquired throughout the whole active day with wearable cameras. This manuscript presents an egocentric dataset with more than 45,000 pictures from four people in different environments such as working or studying. All the images were manually labeled to identify three patterns of interest regarding people's lifestyle: socializing, eating and sedentary. Additionally, two different approaches are proposed to classify egocentric images into one of the 12 target categories defined to characterize these three patterns. The approaches are based on machine learning and deep learning techniques, including traditional classifiers and state-of-art convolutional neural networks. The experimental results obtained when applying these methods to the egocentric dataset demonstrated their adequacy for the problem at hand.Comment: Accepted at First International Workshop on Social Signal Processing and Beyond, 19th International Conference on Image Analysis and Processing (ICIAP), September 201

    Wireless Data Acquisition for Edge Learning: Data-Importance Aware Retransmission

    Full text link
    By deploying machine-learning algorithms at the network edge, edge learning can leverage the enormous real-time data generated by billions of mobile devices to train AI models, which enable intelligent mobile applications. In this emerging research area, one key direction is to efficiently utilize radio resources for wireless data acquisition to minimize the latency of executing a learning task at an edge server. Along this direction, we consider the specific problem of retransmission decision in each communication round to ensure both reliability and quantity of those training data for accelerating model convergence. To solve the problem, a new retransmission protocol called data-importance aware automatic-repeat-request (importance ARQ) is proposed. Unlike the classic ARQ focusing merely on reliability, importance ARQ selectively retransmits a data sample based on its uncertainty which helps learning and can be measured using the model under training. Underpinning the proposed protocol is a derived elegant communication-learning relation between two corresponding metrics, i.e., signal-to-noise ratio (SNR) and data uncertainty. This relation facilitates the design of a simple threshold based policy for importance ARQ. The policy is first derived based on the classic classifier model of support vector machine (SVM), where the uncertainty of a data sample is measured by its distance to the decision boundary. The policy is then extended to the more complex model of convolutional neural networks (CNN) where data uncertainty is measured by entropy. Extensive experiments have been conducted for both the SVM and CNN using real datasets with balanced and imbalanced distributions. Experimental results demonstrate that importance ARQ effectively copes with channel fading and noise in wireless data acquisition to achieve faster model convergence than the conventional channel-aware ARQ.Comment: This is an updated version: 1) extension to general classifiers; 2) consideration of imbalanced classification in the experiments. Submitted to IEEE Journal for possible publicatio

    A Survey on Soft Subspace Clustering

    Full text link
    Subspace clustering (SC) is a promising clustering technology to identify clusters based on their associations with subspaces in high dimensional spaces. SC can be classified into hard subspace clustering (HSC) and soft subspace clustering (SSC). While HSC algorithms have been extensively studied and well accepted by the scientific community, SSC algorithms are relatively new but gaining more attention in recent years due to better adaptability. In the paper, a comprehensive survey on existing SSC algorithms and the recent development are presented. The SSC algorithms are classified systematically into three main categories, namely, conventional SSC (CSSC), independent SSC (ISSC) and extended SSC (XSSC). The characteristics of these algorithms are highlighted and the potential future development of SSC is also discussed.Comment: This paper has been published in Information Sciences Journal in 201
    corecore