1,404 research outputs found

    The discontinuous Galerkin method for fractional degenerate convection-diffusion equations

    Full text link
    We propose and study discontinuous Galerkin methods for strongly degenerate convection-diffusion equations perturbed by a fractional diffusion (L\'evy) operator. We prove various stability estimates along with convergence results toward properly defined (entropy) solutions of linear and nonlinear equations. Finally, the qualitative behavior of solutions of such equations are illustrated through numerical experiments

    Numerical analysis of a nonlinear free-energy diminishing Discrete Duality Finite Volume scheme for convection diffusion equations

    Get PDF
    We propose a nonlinear Discrete Duality Finite Volume scheme to approximate the solutions of drift diffusion equations. The scheme is built to preserve at the discrete level even on severely distorted meshes the energy / energy dissipation relation. This relation is of paramount importance to capture the long-time behavior of the problem in an accurate way. To enforce it, the linear convection diffusion equation is rewritten in a nonlinear form before being discretized. We establish the existence of positive solutions to the scheme. Based on compactness arguments, the convergence of the approximate solution towards a weak solution is established. Finally, we provide numerical evidences of the good behavior of the scheme when the discretization parameters tend to 0 and when time goes to infinity

    Residual equilibrium schemes for time dependent partial differential equations

    Get PDF
    Many applications involve partial differential equations which admits nontrivial steady state solutions. The design of schemes which are able to describe correctly these equilibrium states may be challenging for numerical methods, in particular for high order ones. In this paper, inspired by micro-macro decomposition methods for kinetic equations, we present a class of schemes which are capable to preserve the steady state solution and achieve high order accuracy for a class of time dependent partial differential equations including nonlinear diffusion equations and kinetic equations. Extension to systems of conservation laws with source terms are also discussed.Comment: 23 pages, 12 figure

    Numerical analysis of a robust free energy diminishing Finite Volume scheme for parabolic equations with gradient structure

    Get PDF
    We present a numerical method for approximating the solutions of degenerate parabolic equations with a formal gradient flow structure. The numerical method we propose preserves at the discrete level the formal gradient flow structure, allowing the use of some nonlinear test functions in the analysis. The existence of a solution to and the convergence of the scheme are proved under very general assumptions on the continuous problem (nonlinearities, anisotropy, heterogeneity) and on the mesh. Moreover, we provide numerical evidences of the efficiency and of the robustness of our approach

    Degenerate parabolic equation with zero flux boundary condition and its approximations

    Full text link
    We study a degenerate parabolic-hyperbolic equation with zero flux boundary condition. The aim of this paper is to prove convergence of numerical approximate solutions towards the unique entropy solution. We propose an implicit finite volume scheme on admissible mesh. We establish fundamental estimates and prove that the approximate solution converge towards an entropy-process solution. Contrarily to the case of Dirichlet conditions, in zero-flux problem unnatural boundary regularity of the flux is required to establish that entropy-process solution is the unique entropy solution. In the study of well-posedness of the problem, tools of nonlinear semigroup theory (stationary, mild and integral solutions) were used in [Andreianov, Gazibo, ZAMP, 2013] in order to overcome this difficulty. Indeed, in some situations including the one-dimensional setting, solutions of the stationary problem enjoy additional boundary regularity. Here, similar arguments are developed based on the new notion of integral-process solution that we introduce for this purpose.Comment: 41 page
    • …
    corecore