25,168 research outputs found

    Linear Programming with Inequality Constraints via Entropic Perturbation

    Get PDF
    A dual convex programming approach to solving linear programs with inequality constraints through entropic perturbation is derived. The amount of perturbation required depends on the desired accuracy of the optimum. The dual program contains only non-positivity constraints. An ϵ-optimal solution to the linear program can be obtained effortlessly from the optimal solution of the dual program. Since cross-entropy minimization subject to linear inequality constraints is a special case of the perturbed linear program, the duality result becomes readily applicable. Many standard constrained optimization techniques can be specialized to solve the dual program. Such specializations, made possible by the simplicity of the constraints, significantly reduce the computational effort usually incurred by these methods. Immediate applications of the theory developed include an entropic path-following approach to solving linear semi-infinite programs with an infinite number of inequality constraints and the widely used entropy optimization models with linear inequality and/or equality constraints

    Bethe Projections for Non-Local Inference

    Full text link
    Many inference problems in structured prediction are naturally solved by augmenting a tractable dependency structure with complex, non-local auxiliary objectives. This includes the mean field family of variational inference algorithms, soft- or hard-constrained inference using Lagrangian relaxation or linear programming, collective graphical models, and forms of semi-supervised learning such as posterior regularization. We present a method to discriminatively learn broad families of inference objectives, capturing powerful non-local statistics of the latent variables, while maintaining tractable and provably fast inference using non-Euclidean projected gradient descent with a distance-generating function given by the Bethe entropy. We demonstrate the performance and flexibility of our method by (1) extracting structured citations from research papers by learning soft global constraints, (2) achieving state-of-the-art results on a widely-used handwriting recognition task using a novel learned non-convex inference procedure, and (3) providing a fast and highly scalable algorithm for the challenging problem of inference in a collective graphical model applied to bird migration.Comment: minor bug fix to appendix. appeared in UAI 201

    Cluster Variation Method in Statistical Physics and Probabilistic Graphical Models

    Full text link
    The cluster variation method (CVM) is a hierarchy of approximate variational techniques for discrete (Ising--like) models in equilibrium statistical mechanics, improving on the mean--field approximation and the Bethe--Peierls approximation, which can be regarded as the lowest level of the CVM. In recent years it has been applied both in statistical physics and to inference and optimization problems formulated in terms of probabilistic graphical models. The foundations of the CVM are briefly reviewed, and the relations with similar techniques are discussed. The main properties of the method are considered, with emphasis on its exactness for particular models and on its asymptotic properties. The problem of the minimization of the variational free energy, which arises in the CVM, is also addressed, and recent results about both provably convergent and message-passing algorithms are discussed.Comment: 36 pages, 17 figure

    Entropy balancing is doubly robust

    Full text link
    Covariate balance is a conventional key diagnostic for methods used estimating causal effects from observational studies. Recently, there is an emerging interest in directly incorporating covariate balance in the estimation. We study a recently proposed entropy maximization method called Entropy Balancing (EB), which exactly matches the covariate moments for the different experimental groups in its optimization problem. We show EB is doubly robust with respect to linear outcome regression and logistic propensity score regression, and it reaches the asymptotic semiparametric variance bound when both regressions are correctly specified. This is surprising to us because there is no attempt to model the outcome or the treatment assignment in the original proposal of EB. Our theoretical results and simulations suggest that EB is a very appealing alternative to the conventional weighting estimators that estimate the propensity score by maximum likelihood.Comment: 23 pages, 6 figures, Journal of Causal Inference 201
    • …
    corecore