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ABSTRACT. A dual convex programming approach to solving linear programs with inequality con­

straints through entropic perturbation is derived. The amount of perturbation required depends on the 

desired accuracy of the optimum. The dual program contains only non-positivity constraints. An E­

optimal solution to the linear program can be obtained effortlessly from the optimal solution of the 

dual program. Since cross-entropy minimization subject to linear inequality constraints is a special 

case of the perturbed linear program, the duality result becomes readily applicable. Many standard 

constrained optimization techniques can be specialized to solve the dual program. Such specializa­

tions, made possible by the simplicity of the constraints, significantly reduce the computational effort 

usually incurred by these methods. Immediate applications of the theory developed include an entro­

pic path-following approach to solving linear semi-infinite programs with an infinite number of ine­

quality constraints and the widely used entropy optimization models with linear inequality and/or 

equality constraints. 

KEY WORDS AND PHRASES. Linear Programming, Perturbation Method, Duality Theory, Entropy 


Optimization. 
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I. INTRODUCTION. 

Since Karmarkar's projective scaling algorithm was introduced in 1984 [1], various interior­

point methods [2,3] have been proposed to compete with the classical simplex method [4] for linear 

programs. Among many new research directions, an unconstrained convex programming approach 

was proposed [5], in a framework of geometric programming [6], for solving linear programming 

problems in Karmarkar's form. The approach involves solving an unconstrained convex program­

ming dual problem and converting the dual optimal solution to an E-optimal solution for the linear 

program. The work was extended for linear programming problems in standard form [7] with a qua­

dratically convergent global algorithm, based on the curved search methods [8]. This paper further 

extends the approach to solve linear programming problems with inequality constraints directly 

without a conversion to the standard form. In this way, no artificial variables are added and the 

dimensionality of the original problem is kept. In accordance with the earlier work, we derive the 

geometric dual, although the same dual program can be derived using the Lagrangian approach. 
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The motivation of this study is twofold. First, Fang and Wu [9] recently proposed an entropic 

path-following approach to solving linear semi-infinite programs with finitely many variables and 

infinitely many inequality constraints. Their algorithms require solving an entropically perturbed 

linear program with finitely many inequality constraints. After introducmg artificial variables, the 

re~ulting equality-constrained convex program is no longer an entropically perturbed linear program 

due to the absence of the entropic terms for the artificial variables. Therefore, the algorithms pro­

posed in [7] is no longer applicable and an algorithm for solving directly the entropically perturbed 

linear programs with inequality constraints is needed. Second, the widely applicable entropy optimi­

zation problem with linear inequality constraints turns out to be a special case of the perturbed linear 

program being treated. Although such minimization problems subject to equality constramts have 

been used widely and treated extensively in recent literature [e.g. 10-16], the inequality case has 

received little attention. Nevertheless, the inequality formulation is particularly appealing when point 

estimates for the linear moments of the underlying distribution, i.e. the right-hand sides of the equal­

Ity formulation, cannot be accurately obtained but the interval (range) estimates for the moments are 

available. 

In this paper, we extend the geometric programming approach to derive the dual program in 

Section 2, discuss other applications of the duality results in Section 3, and conclude the paper in 

S,ection 4. 

2. A DUAL APPROACH WITH ENTROPIC PERTURBATION. 

Consider the following (primal) linear program: 

Program P: 

subject to Ax s; b (2.1) 

X~ 0. (2.2) 

where c and x are n-dimensional column vectors, A is an m x n (m s; n) matrix, b is an m­

dimensional column vector, and 0 is the n-dimensional zero column vector. 

The linear dual of Program P is given as follows: 

Program D: Maximize bTw 

subject to ATw s; c 

w s; 0' 

where w is an m-dimensional column vector. 

Following the approach developed in [5], for any given scalar 1.1 > 0, instead of solving Program 

P directly, we tackle the following nonlinear program with an entropic perturbation: 

n 
Program PJ.l: Minimize fJ.l(x) =cTx + IJ.Lx}nxi 

j=l 

subject to Ax s; b (2.3) 

X~ 0. (2.4) 

Note that the entropic function xlnx is a strictly convex function well-defined on [0, oo), with the con­

vention that OlnO =0. It has a unique minimum value of -lie at x = 1/e, where e =2.718 .... 

Like all interior-point methods, we make an Interior-Point Assumption, namely, Program P has 

an interior feasible solution x > 0. Under this assumption, Program PJ.l is feasible for any 1.1 > 0. 

Moreover, since OlnO = 0, cixi + xilnxi ~ +oo as xi ~ oo, and xilnxi is strictly convex over its domain 



LINEAR PROGRAMMING WITH INEQi.:ALITY CONSTRAINTS 179 

for each j. Program P~ achieve~ a limtc mimmum at <1 umquc pomt :\• E R". for each 11 > 0. More 

mtcrc~ungly. a~ di~cu~~cd m [71. if Program P ha~ a bounded fea~1ble domam (I c.. the Bounded 

Fca~Iblc Domam A~~umptwn). then a~ 11 -7 0 the optunal ~olut10n of Program P~ approachc~ an 

optimal ~olution of Program P. To dcnvc the geometric dual or Pw COil~Jder the followmg ~Imple 

inequality: 

lnL~L-1, for 1 > 0 (2.5) 

Note that this inequality become~ an equahty if and only tf z= I. 

For any 1.1 > 0, W1 E R (i = l, ... ,m), and x1 > 0 (J = l, ... ,n), we define 

m 

l(~).,w,- c 1 )/~] -I 
e 1"'1 

zJ=-----­ for J = l,... ,n. 
xJ 

In this way, x1 > 0 implies z1 > 0 and, by inequality (2.5), we have 

m 

l<D,,w,-c,)/u)-1 
m e •=I 

[(~a11 w 1 -c1 )/1.1] -l - lnx1 ~ ...:...._____ - I . (2.6) 
1;1 XJ 

Multiplying both sides by x1>0 and rearranging terms lead to 

m 

m I<D,,w,-c,)/~)-1 

x1 [(~a11 w1-c1)/1.1] - e •=I :S x1lnx1 . 

I;I 

Note that this inequality holds even if x1 =0. Now, multiplying both sides by 1.1 and summing over j, 

we obtain 

(2.7) 

Therefore, for any x~ such that Ax S b and wSO, 
m 

m n I(D,,w,-c,)/~1 -1 n n 

~b;w1 - 1.1 ~e Fl S ~c1x1 + 1.1 ~xilnx1 . (2.8) 

I;J j;J j=l j=l 

Recall that the right-hand side of (2.8) is exactly the objective function of Program Pw We now 

define the following geometric dual program D11 of P11 : 
m 

m n I(D,,w,-c,)/11] -1 
Program D11 : Maximize d11(w) =I,b,w,- 1.1I,e •=I subject tow :S 0. 

1=1 j=l 

Program D11 is a convex program with only non-positivity constraints and the sum in each of the 

n exponents in the second term of its objective function is simply the amount of violation of the 

corresponding constraint in Program D. More importantly, if Program D11 attams a finite optimum at 

w*(l.l) for every 1.1>0. then w*(l.l) approaches a feasible solution of Program D as 1.1 approaches 0. 

Program D11 can also be derived via the Lagrangian approach. Note that this dual program differs 

from the one obtained for standard-form linear programs in [7] only in the extra non-positivity 

requirements. While it is usually the case and easy to see that, in the Lagrangian max-min denva­
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twn, a change of stgn m a primal constraint re,ults m a change of range of the corresponding dual 

variable, thts causal relationship i' not apparent in the geometric programming denvation. Our 

derivation, in contrast with its counterpart for the equality-constrained program, illustrates the 

difference in deriving the geometric dual program between the equality-constrained and the 

mcquality-constrained ca,es. 

We now turn to establishing the duality theory. 

THEOREM I. (Weak Duality Theorem) If P~ is feasible, then Min(P~) :2: Sup(D~). 

PROOF. Inequality (2.8) implies that f~(x) $ d~(w) as long as x is primal feasible and w is dual 

feastble. The weak duality follows consequently. 0 

THEOREM 2. Assume that (i) x* is primal feasible and (ii) w* is dual feasible. If 

for j = I , ... ,n, and (2.9) 

w,• [±a,JxJ•- b,] = 0, for i=1,2, ... ,m , (2.10) 
j=l 

then x • is an optimal solution to Program P ~ and w * is an optimal solution to Program Dw More­

oxer, Min(P ~) = Max(D~). 

PROOF. Inequality (2.8) becomes an equality if and only if both inequalities (2.6) and (2.7) 

become equalities, for each j= 1,2, ... ,n. But, inequality (2. 7) becomes an equality if and only if 

wi [±a,ixJ- b,] = 0, i=1,2, ... ,m. 
j=l 

Recall that inequality (2.5) becomes an equality if and only if z = 1. Hence inequality (2.6) becomes 

an equality if and only if 
m 

r<D.1w,-c1v~l -I 
e 1=l 

ZJ = ..:.._____ = 1 

XJ 


or, equivalently, 
m 

[(D,1w,-c1)/~] -I 
XJ = e •=I 

By equations (2.9) and (2.10), inequality (2.7) becomes an equality. By Theorem 1, the feasibility of 

x• and w• implies their optimality. 0 

THEOREM 3. The objective function d~(w) of Program D~ is concave. If the constraint matrix 

A in Program P has full row-rank, then d~(w) is strictly concave. 

PROOF. The k 1-th element of the gradient vector of the dual objective function d~(w) is 

m 

act (w) n [<D.Jw,'-cj)t~J -I 

_I!__ = bk, - ~:;e o=l aku . (2.11) 


awk, j=l 

Consequently, the (k1,k2)-th element of the Hessian matrix of function d~(w) is given by 

m 

act~(w) 1 ~ [(~,Jw,-cj)/1!] -I 
= --~e akuak2.J.a awk, wk, Jl j=l 

Therefore, the Hessian matrix can be written as ADr(w)AT, where Dr(w) is an n x n diagonal matrix 

with rjCw) as its j-th diagonal element and 
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"' I 1(~),1 w,-cy~l -1 
r1(w) = -~e ,~, < 0 . 

11 

By matrix theory, the He,sian matnx is nonsingular and negative defimte as long as A ha' full row­

rank. Therefore, d~(w) IS strictly concave if A has full row-rank. 0 

THEOREM 4. (Strong Duality Theorem) If Program P has an mtenor fcastble solutwn, then 

Program D~ attains a finite maximum and Min(P~) = Max(D~). If, in addition, the constraint matnx 

A has full row-rank, then Program D~ has a unique optimal solution w*(l1)::; 0. In either case, for­

mula (2.9) provides a dual-to-primal conversion which defines the optimal solution x*(l1) of Program 

Pw 

PROOF. Under the Interior-Point Assumption, Program P ( hence P~ ) has an interior feasible 

solution. From convex analysis ( Fenchel's Theorem [6,17]), we know that there is no duality gap 

between the Programs P~ and Dw Recall that Program P~ always achieves a finite optimum as long 

as 11 > 0. Therefore, if A has full row-rank, then D~(w) is strictly concave and Program D~ must 

also achieve a finite optimum at a unique maximizer w*(l1)::; 0. Since any w::;O is a regular point for 

the non-positivity constraints and d~(w) is continuously differentiable, the Kuhn-Tucker Conditions 

hold at w * (11). In other words, there exists a u;ctl such that 

-V'd~(w*(l1)) + u T = 0 , and (2.12) 

uTw*(l1) = 0. (2.13) 

By equation (2.11), equation (2.12) becomes 
m 

n I<D,1w,'(~)-c1)/~] -I 
-bk + Le '"' akJ + uk = 0 , k=l,2, ... ,m . (2.14) 

j=l 

If we further define x*(l1) > 0 according to (2.9), then the above equation becomes 

Ax*(l1) ::; b , 

which is simply the primal feasibility. Furthermore, by this definition and equation (2.14), equation 

(2.13) becomes 

The desired conclusion follows from Theorem 2. 0 

So far, we have concentrated on solving Program P, which contains only inequality constraints. 

The theory can be easily extended for linear programs with both inequality and equality constraints 

in the following form: 

Program P': 

where c and x are n-dimensional column vectors, A 1 is an m 1 x n (m 1 ::; n) matrix, A2 is an m2 x n 

(m2 ::; n) matrix, b 1 is an m1-dimensional column vector, b2 is an mTdimensional column vector, and 

0 is the n-dimensional zero column vector. 

The perturbed problem, Program P~, is defined by 
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n 
Program P~: Mmimtze c T x + J.L l:;x}nx1 

j=l 

~ubJect to A1x :5 b 1 

A2x = b2 

X~ 0. 

With m=m 1+m2 and the notation wT=(w!,wJ), where w 1 is an m 1-dimenstonal column vector and w2 

is an m2-dimensional column vector, the geometric dual is defined as 

m 

, m n [(I;a,,w,-c,)/~J) -I 
Program D~: Maximize d11 (w) = l:;b,w,- J.Ll:;e ""' subject to w 1 :50 . 

•=I J=l 

With the notation AT=(A!.AJ), we state the following theorem, whose proof is straightforward in 

light of the derivation provided above and treatment of the standard-form linear programs in [7]. 

THEOREM 5. If Program p' has an interior feasible solution, then Program D~, for every JDO, 
attains a finite maximum and Min(P~) = Max(D~). If, in addition, the constraint matrix A has full 

row-rank, then Program D~, for every JDO, has a umque optimal solution w*{J.L). In either case, 

equation (2.9) provides a dual-to-primal conversion which defines the optimal solution x*(J.L) of Pro­

gram P~. 

As we stated before, if the feasible domain of Program P is bounded, then the optimal solution 

of Program P11 converges to an optimal solution of Program P, as J.L reduces to zero. Actually, by 

simply modifying a parallel result in [7], we can easily construct an £-optimal solution according to 

the following theorem without any difficulty: 

THEOREM 6. If Program p' has an interior feasible solution x > 0 and its feasible domain is 

contained in a spheroid centered at the origin with a radius of M > 0, then, for any J.l > 0 such that 

J.l :5 E I 2n't , (2.15) 

where 

't =max{ 1/e, IMlnMI }, (2.16) 

the optimal solution of Program P~ is an £-optimal solution of Program P'. 

3. CROSS-ENTROPY MINIMIZATION SUBJECT TO INEQUALITY CONSTRAINTS 

The cross-entropy minimization problem has received much attention in the recent literature 

[10-16]. However, most of the attention has focused on the case with equality constraints (in addi­

tion to the non-negativity constraints). In fact, a more general setting of linearly-constrained 

minimum cross-entropy problem can be described in the following form (assuming Pi> 0, 

j=1 ,2, ... ,n): 

n X· 
Program Q : Minimize l: xi In (_1.) 

J=l P1 

subject to ~a,-! J- ' 1, 2, ... , ml.~ 1 x<bI 
1 i = 

j=l 

2 2L0 
llji x1 = b, , i = 1, 2, ... , m2 • 

j=l 

~ 0 , j = 1, 2, ... , n . x1 

http:AT=(A!.AJ
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Although the inequality constraint~ can be converted mto equality ones by adding ~lack vanable~. the 

rc~ulting program is no longer a regular entropy optimization problem due to the absence of the 

entroptc terms x}nxJ for the slack variables in the objective function. Therefore, the duality theory 

developed in [16] and the algorithms developed in [10] are not applicable. Also note that Program Q 

1~ a ~pecial case of Program P~ with 1.1 = I and cJ =-In Pr Therefore, the theory developed m the 

prevtou~ ~ection applies readily to Program Q. In particular, the geomctnc dual program of Program 

Q can be derived as follows: 
m 

m n L aiJ wl -I 

Program F : max f(w) = L b, w, - L P/"' subject to w 1 $ 0 . 
J;J Fl 

In light of Theorem 5, we have the following corollary for the strong duality: 

COROLLARY I. If Program Q has an interior feasible solution and a constraint matrix A of 

full rank, then Program F has a unique optimal solution w* and equation (2.9), with cJ=--lnpJ' pro­

vides a dual-to-primal conversion which defines the optimal solution x* of Program Q. Moreover, 

Min(Q) = Max(F). 

4. CONCLUSION 

We have extended the unconstrained convex programming approach to solving linear programs 

with mequality constraints without adding artificial variables. By the duality theory, one can solve a 

given linear program by solving the geometric dual of a perturbed linear program. Many standard 

constrained optimization techniques [e.g. 18] can be specialized to solve the dual program D~. Such 

specializations, made possible by the simplicity of the constraints, significantly reduce the computa­

tional effort usually incurred by these methods. For example, the projection operation required by 

the projective gradient method is trivial, which makes the method a good candidate solution algo­

rithm. 

Immediate applications of the theory developed include an entropic path-following approach to 

solving linear semi-infinite programs with an infinite number of inequality constraints and the widely 

used entropy optimization models with linear equality and/or inequality constraints. 
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