2,672 research outputs found

    Linear Programming with Inequality Constraints via Entropic Perturbation

    Get PDF
    A dual convex programming approach to solving linear programs with inequality constraints through entropic perturbation is derived. The amount of perturbation required depends on the desired accuracy of the optimum. The dual program contains only non-positivity constraints. An ϵ-optimal solution to the linear program can be obtained effortlessly from the optimal solution of the dual program. Since cross-entropy minimization subject to linear inequality constraints is a special case of the perturbed linear program, the duality result becomes readily applicable. Many standard constrained optimization techniques can be specialized to solve the dual program. Such specializations, made possible by the simplicity of the constraints, significantly reduce the computational effort usually incurred by these methods. Immediate applications of the theory developed include an entropic path-following approach to solving linear semi-infinite programs with an infinite number of inequality constraints and the widely used entropy optimization models with linear inequality and/or equality constraints

    On the finite termination of an entropy function based smoothing Newton method for vertical linear complementarity problems

    Get PDF
    By using a smooth entropy function to approximate the non-smooth max-type function, a vertical linear complementarity problem (VLCP) can be treated as a family of parameterized smooth equations. A Newton-type method with a testing procedure is proposed to solve such a system. We show that the proposed algorithm finds an exact solution of VLCP in a finite number of iterations, under some conditions milder than those assumed in literature. Some computational results are included to illustrate the potential of this approach.Newton method;Finite termination;Entropy function;Smoothing approximation;Vertical linear complementarity problems

    Convergence of Entropic Schemes for Optimal Transport and Gradient Flows

    Full text link
    Replacing positivity constraints by an entropy barrier is popular to approximate solutions of linear programs. In the special case of the optimal transport problem, this technique dates back to the early work of Schr\"odinger. This approach has recently been used successfully to solve optimal transport related problems in several applied fields such as imaging sciences, machine learning and social sciences. The main reason for this success is that, in contrast to linear programming solvers, the resulting algorithms are highly parallelizable and take advantage of the geometry of the computational grid (e.g. an image or a triangulated mesh). The first contribution of this article is the proof of the Γ\Gamma-convergence of the entropic regularized optimal transport problem towards the Monge-Kantorovich problem for the squared Euclidean norm cost function. This implies in particular the convergence of the optimal entropic regularized transport plan towards an optimal transport plan as the entropy vanishes. Optimal transport distances are also useful to define gradient flows as a limit of implicit Euler steps according to the transportation distance. Our second contribution is a proof that implicit steps according to the entropic regularized distance converge towards the original gradient flow when both the step size and the entropic penalty vanish (in some controlled way)

    On the convergence of mirror descent beyond stochastic convex programming

    Get PDF
    In this paper, we examine the convergence of mirror descent in a class of stochastic optimization problems that are not necessarily convex (or even quasi-convex), and which we call variationally coherent. Since the standard technique of "ergodic averaging" offers no tangible benefits beyond convex programming, we focus directly on the algorithm's last generated sample (its "last iterate"), and we show that it converges with probabiility 11 if the underlying problem is coherent. We further consider a localized version of variational coherence which ensures local convergence of stochastic mirror descent (SMD) with high probability. These results contribute to the landscape of non-convex stochastic optimization by showing that (quasi-)convexity is not essential for convergence to a global minimum: rather, variational coherence, a much weaker requirement, suffices. Finally, building on the above, we reveal an interesting insight regarding the convergence speed of SMD: in problems with sharp minima (such as generic linear programs or concave minimization problems), SMD reaches a minimum point in a finite number of steps (a.s.), even in the presence of persistent gradient noise. This result is to be contrasted with existing black-box convergence rate estimates that are only asymptotic.Comment: 30 pages, 5 figure
    • …
    corecore