3,994 research outputs found

    Entropic Geometry from Logic

    Get PDF
    We produce a probabilistic space from logic, both classical and quantum, which is in addition partially ordered in such a way that entropy is monotone. In particular do we establish the following equation: Quantitative Probability = Logic + Partiality of Knowledge + Entropy. That is: 1. A finitary probability space \Delta^n (=all probability measures on {1,...,n}) can be fully and faithfully represented by the pair consisting of the abstraction D^n (=the object up to isomorphism) of a partially ordered set (\Delta^n,\sqsubseteq), and, Shannon entropy; 2. D^n itself can be obtained via a systematic purely order-theoretic procedure (which embodies introduction of partiality of knowledge) on an (algebraic) logic. This procedure applies to any poset A; D_A\cong(\Delta^n,\sqsubseteq) when A is the n-element powerset and D_A\cong(\Omega^n,\sqsubseteq), the domain of mixed quantum states, when A is the lattice of subspaces of a Hilbert space. (We refer to http://web.comlab.ox.ac.uk/oucl/publications/tr/rr-02-07.html for a domain-theoretic context providing the notions of approximation and content.)Comment: 19 pages, 8 figure

    On the Origin of Gravity and the Laws of Newton

    Get PDF
    Starting from first principles and general assumptions Newton's law of gravitation is shown to arise naturally and unavoidably in a theory in which space is emergent through a holographic scenario. Gravity is explained as an entropic force caused by changes in the information associated with the positions of material bodies. A relativistic generalization of the presented arguments directly leads to the Einstein equations. When space is emergent even Newton's law of inertia needs to be explained. The equivalence principle leads us to conclude that it is actually this law of inertia whose origin is entropic.Comment: 29 pages, 6 figure

    Maximum Entropy and Bayesian Data Analysis: Entropic Priors

    Full text link
    The problem of assigning probability distributions which objectively reflect the prior information available about experiments is one of the major stumbling blocks in the use of Bayesian methods of data analysis. In this paper the method of Maximum (relative) Entropy (ME) is used to translate the information contained in the known form of the likelihood into a prior distribution for Bayesian inference. The argument is inspired and guided by intuition gained from the successful use of ME methods in statistical mechanics. For experiments that cannot be repeated the resulting "entropic prior" is formally identical with the Einstein fluctuation formula. For repeatable experiments, however, the expected value of the entropy of the likelihood turns out to be relevant information that must be included in the analysis. The important case of a Gaussian likelihood is treated in detail.Comment: 23 pages, 2 figure

    Entropic Dynamics

    Full text link
    Entropic Dynamics is a framework in which dynamical laws are derived as an application of entropic methods of inference. No underlying action principle is postulated. Instead, the dynamics is driven by entropy subject to the constraints appropriate to the problem at hand. In this paper we review three examples of entropic dynamics. First we tackle the simpler case of a standard diffusion process which allows us to address the central issue of the nature of time. Then we show that imposing the additional constraint that the dynamics be non-dissipative leads to Hamiltonian dynamics. Finally, considerations from information geometry naturally lead to the type of Hamiltonian that describes quantum theory.Comment: Invited contribution to the Entropy special volume on Dynamical Equations and Causal Structures from Observation

    Entropic Dynamics

    Get PDF
    I explore the possibility that the laws of physics might be laws of inference rather than laws of nature. What sort of dynamics can one derive from well-established rules of inference? Specifically, I ask: Given relevant information codified in the initial and the final states, what trajectory is the system expected to follow? The answer follows from a principle of inference, the principle of maximum entropy, and not from a principle of physics. The entropic dynamics derived this way exhibits some remarkable formal similarities with other generally covariant theories such as general relativity.Comment: Presented at MaxEnt 2001, the 21th International Workshop on Bayesian Inference and Maximum Entropy Methods (August 4-9, 2001, Baltimore, MD, USA

    Entropic force, noncommutative gravity and ungravity

    Full text link
    After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent derivation of Newton's law in terms of entropic force proposed by Verlinde. By reviewing some points of the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling deviations to the Newton's law. More specifically, we study: (1) noncommutative geometry deviations and (2) ungraviton corrections. As a special result in the noncommutative case, we find that the noncommutative character of the manifold would be equivalent to the temperature of a thermodynamic system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde's derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptotically safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus such modifications.Comment: 8 pages, final version published on Physical Review
    • …
    corecore