49 research outputs found

    Entanglement-Assisted Capacity of Quantum Multiple-Access Channels

    Full text link
    We find a regularized formula for the entanglement-assisted (EA) capacity region for quantum multiple access channels (QMAC). We illustrate the capacity region calculation with the example of the collective phase-flip channel which admits a single-letter characterization. On the way, we provide a first-principles proof of the EA coding theorem based on a packing argument. We observe that the Holevo-Schumacher-Westmoreland theorem may be obtained from a modification of our EA protocol. We remark on the existence of a family hierarchy of protocols for multiparty scenarios with a single receiver, in analogy to the two-party case. In this way, we relate several previous results regarding QMACs.Comment: Published version. 13 pages, 3 figure

    Superadditivity of the Classical Capacity with Limited Entanglement Assistance

    Get PDF
    Finding the optimal encoding strategies can be challenging for communication using quantum channels, as classical and quantum capacities may be superadditive. Entanglement assistance can often simplify this task, as the entanglement-assisted classical capacity for any channel is additive, making entanglement across channel uses unnecessary. If the entanglement assistance is limited, the picture is much more unclear. Suppose the classical capacity is superadditive, then the classical capacity with limited entanglement assistance could retain superadditivity by continuity arguments. If the classical capacity is additive, it is unknown if superadditivity can still be developed with limited entanglement assistance. We show this is possible, by providing an example. We construct a channel for which, the classical capacity is additive, but that with limited entanglement assistance can be superadditive. This shows entanglement plays a weird role in communication and we still understand very little about it.Comment: 13 page

    On the Second-Order Asymptotics for Entanglement-Assisted Communication

    Get PDF
    The entanglement-assisted classical capacity of a quantum channel is known to provide the formal quantum generalization of Shannon's classical channel capacity theorem, in the sense that it admits a single-letter characterization in terms of the quantum mutual information and does not increase in the presence of a noiseless quantum feedback channel from receiver to sender. In this work, we investigate second-order asymptotics of the entanglement-assisted classical communication task. That is, we consider how quickly the rates of entanglement-assisted codes converge to the entanglement-assisted classical capacity of a channel as a function of the number of channel uses and the error tolerance. We define a quantum generalization of the mutual information variance of a channel in the entanglement-assisted setting. For covariant channels, we show that this quantity is equal to the channel dispersion, and thus completely characterize the convergence towards the entanglement-assisted classical capacity when the number of channel uses increases. Our results also apply to entanglement-assisted quantum communication, due to the equivalence between entanglement-assisted classical and quantum communication established by the teleportation and super-dense coding protocols.Comment: v2: Accepted for publication in Quantum Information Processin

    One-shot entanglement-assisted quantum and classical communication

    Full text link
    We study entanglement-assisted quantum and classical communication over a single use of a quantum channel, which itself can correspond to a finite number of uses of a channel with arbitrarily correlated noise. We obtain characterizations of the corresponding one-shot capacities by establishing upper and lower bounds on them in terms of the difference of two smoothed entropic quantities. In the case of a memoryless channel, the upper and lower bounds converge to the known single-letter formulas for the corresponding capacities, in the limit of asymptotically many uses of it. Our results imply that the difference of two smoothed entropic quantities characterizing the one-shot entanglement-assisted capacities serves as a one-shot analogue of the mutual information, since it reduces to the mutual information, between the output of the channel and a system purifying its input, in the asymptotic, memoryless scenario.Comment: 10 pages, 2 figures. Title changed due to new results on the one-shot entanglement-assisted quantum communication. In addition, an error in the previous version regarding the converse proof of the one-shot EAC capacity has been correcte

    A father protocol for quantum broadcast channels

    Full text link
    A new protocol for quantum broadcast channels based on the fully quantum Slepian-Wolf protocol is presented. The protocol yields an achievable rate region for entanglement-assisted transmission of quantum information through a quantum broadcast channel that can be considered the quantum analogue of Marton's region for classical broadcast channels. The protocol can be adapted to yield achievable rate regions for unassisted quantum communication and for entanglement-assisted classical communication; in the case of unassisted transmission, the region we obtain has no independent constraint on the sum rate, only on the individual transmission rates. Regularized versions of all three rate regions are provably optimal.Comment: Typo in statement of Theorem 4 fixe

    Secure Communication with Unreliable Entanglement Assistance

    Full text link
    Secure communication is considered with unreliable entanglement assistance, where the adversary may intercept the legitimate receiver's entanglement resource before communication takes place. The communication setting of unreliable assistance, without security aspects, was originally motivated by the extreme photon loss in practical communication systems. The operational principle is to adapt the transmission rate to the availability of entanglement assistance, without resorting to feedback and repetition. Here, we require secrecy as well. An achievable secrecy rate region is derived for general quantum wiretap channels, and a multi-letter secrecy capacity formula for the special class of degraded channels

    Universal coding for transmission of private information

    Full text link
    We consider the scenario in which Alice transmits private classical messages to Bob via a classical-quantum channel, part of whose output is intercepted by an eavesdropper, Eve. We prove the existence of a universal coding scheme under which Alice's messages can be inferred correctly by Bob, and yet Eve learns nothing about them. The code is universal in the sense that it does not depend on specific knowledge of the channel. Prior knowledge of the probability distribution on the input alphabet of the channel, and bounds on the corresponding Holevo quantities of the output ensembles at Bob's and Eve's end suffice.Comment: 31 pages, no figures. Published versio
    corecore