2,501 research outputs found

    Quantum entanglement and disentanglement of multi-atom systems

    Full text link
    We present a review of recent research on quantum entanglement, with special emphasis on entanglement between single atoms, processing of an encoded entanglement and its temporary evolution. Analysis based on the density matrix formalism are described. We give a simple description of the entangling procedure and explore the role of the environment in creation of entanglement and in disentanglement of atomic systems. A particular process we will focus on is spontaneous emission, usually recognized as an irreversible loss of information and entanglement encoded in the internal states of the system. We illustrate some certain circumstances where this irreversible process can in fact induce entanglement between separated systems. We also show how spontaneous emission reveals a competition between the Bell states of a two qubit system that leads to the recently discovered "sudden" features in the temporal evolution of entanglement. An another problem illustrated in details is a deterministic preparation of atoms and atomic ensembles in long-lived stationary squeezed states and entangled cluster states. We then determine how to trigger the evolution of the stable entanglement and also address the issue of a steered evolution of entanglement between desired pairs of qubits that can be achieved simply by varying the parameters of a given system.Comment: Review articl

    Coexistence of thermal noise and squeezing in the intensity fluctuations of small laser diodes

    Full text link
    The intensity fluctuations of laser light are derived from photon number rate equations. In the limit of short times, the photon statistics for small laser devices such as typical semiconductor laser diodes show thermal characteristics even above threshold. In the limit of long time averages represented by the low frequency component of the noise, the same devices exhibit squeezing. It is shown that squeezing and thermal noise can coexist in the multi-mode output field of laser diodes. This result implies that the squeezed light generated by regularly pumped semiconductor laser diodes is qualitatively different from single mode squeezed light. In particular, no entanglement between photons can be generated using this type of collective multi-mode squeezing.Comment: 9 pages, 8 figures, submitted to J. Opt. Soc. Am. B, added references and clarifications of the contex

    Ultra-bright omni-directional collective emission of correlated photon pairs from atomic vapors

    Full text link
    Spontaneous four-wave mixing can generate highly correlated photon pairs from atomic vapors. We show that multi-photon pumping of dipole-forbidden transitions in a recoil-free geometry can result in ultra-bright pair-emission in the full 4\pi solid angle, while strongly suppresses background Rayleigh scattering and associated atomic heating, Such a system can produce photon pairs at rates of ~ 10 ^12 per second, given only moderate optical depths of 10 ~ 100, or alternatively, the system can generate paired photons with sub-natural bandwidths at lower production rates. We derive a rate-equation based theory of the collective atomic population and coherence dynamics, and present numerical simulations for a toy model, as well as realistic model systems based on 133 Cs and 171 Yb level structures. Lastly, we demonstrate that dark-state adiabatic following (EIT) and/or timescale hierarchy protects the paired photons from reabsorption as they propagate through an optically thick sample

    Heralded single photon absorption by a single atom

    Full text link
    The emission and absorption of single photons by single atomic particles is a fundamental limit of matter-light interaction, manifesting its quantum mechanical nature. At the same time, as a controlled process it is a key enabling tool for quantum technologies, such as quantum optical information technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission and absorption will allow implementing quantum networking scenarios [1, 7, 8, 9], where photonic communication of quantum information is interfaced with its local processing in atoms. In studies of single-photon emission, recent progress includes control of the shape, bandwidth, frequency, and polarization of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption of a single photon by a single atom is much less investigated; proposals exist but only very preliminary steps have been taken experimentally such as detecting the attenuation and phase shift of a weak laser beam by a single atom [21, 22], and designing an optical system that covers a large fraction of the full solid angle [23, 24, 25]. Here we report the interaction of single heralded photons with a single trapped atom. We find strong correlations of the detection of a heralding photon with a change in the quantum state of the atom marking absorption of the quantum-correlated heralded photon. In coupling a single absorber with a quantum light source, our experiment demonstrates previously unexplored matter-light interaction, while opening up new avenues towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure
    corecore