2,439 research outputs found

    Path Selection for Quantum Repeater Networks

    Full text link
    Quantum networks will support long-distance quantum key distribution (QKD) and distributed quantum computation, and are an active area of both experimental and theoretical research. Here, we present an analysis of topologically complex networks of quantum repeaters composed of heterogeneous links. Quantum networks have fundamental behavioral differences from classical networks; the delicacy of quantum states makes a practical path selection algorithm imperative, but classical notions of resource utilization are not directly applicable, rendering known path selection mechanisms inadequate. To adapt Dijkstra's algorithm for quantum repeater networks that generate entangled Bell pairs, we quantify the key differences and define a link cost metric, seconds per Bell pair of a particular fidelity, where a single Bell pair is the resource consumed to perform one quantum teleportation. Simulations that include both the physical interactions and the extensive classical messaging confirm that Dijkstra's algorithm works well in a quantum context. Simulating about three hundred heterogeneous paths, comparing our path cost and the total work along the path gives a coefficient of determination of 0.88 or better.Comment: 12 pages, 8 figure

    Energy efficient mining on a quantum-enabled blockchain using light

    Full text link
    We outline a quantum-enabled blockchain architecture based on a consortium of quantum servers. The network is hybridised, utilising digital systems for sharing and processing classical information combined with a fibre--optic infrastructure and quantum devices for transmitting and processing quantum information. We deliver an energy efficient interactive mining protocol enacted between clients and servers which uses quantum information encoded in light and removes the need for trust in network infrastructure. Instead, clients on the network need only trust the transparent network code, and that their devices adhere to the rules of quantum physics. To demonstrate the energy efficiency of the mining protocol, we elaborate upon the results of two previous experiments (one performed over 1km of optical fibre) as applied to this work. Finally, we address some key vulnerabilities, explore open questions, and observe forward--compatibility with the quantum internet and quantum computing technologies.Comment: 25 pages, 5 figure

    Quantum percolation in complex networks

    Get PDF
    Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2018, Tutor: Marián BoguñáComplex quantum networks will be essential in the future either for the distribution of quantum information (telecommunications) or for studying complex quantical linked systems among others. Complex networks have a wide variety of properties that will help us understand how complex quantum networks behave. Here we will study how this complex networks perform using local quantum transformations at the nodes. We will focus specifcally on the Internet network and we will study its behaviour from a current and quantum perspective

    The Impact of a Nuclear Disturbance on a Space-Based Quantum Network

    Get PDF
    Quantum communications tap into the potential of quantum mechanics to go beyond the limitations of classical communications. Currently, the greatest challenge facing quantum networks is the limited transmission range of encoded quantum information. Space-based quantum networks offer a means to overcome this limitation, however the performance of such a network operating in harsh conditions is unknown. This dissertation analyzes the capabilities of a space-based quantum network operating in a nuclear disturbed environment. First, performance during normal operating conditions is presented using Gaussian beam modeling and atmospheric modeling to establish a baseline to compare against a perturbed environment. Then, the DEfense Land Fallout Interpretive Code software and computational fluid dynamics study the effect of a nuclear explosion on the surrounding environment. Finally, these sources of noise are combined to estimate the degradation of quantum states being transmitted through a nuclear disturbed environment. It is found that the effects of a nuclear environment on a quantum network is a function of the height of blast, the explosive yield, and the network design. Debris lofted into the atmosphere during a surface blast dissipate after a couple of hours, yet the concentration is initially high and results in heavy signal loss. The nuclear fireball produced additional background light interference that scatters into the receiver\u27s detector from tens of seconds to a couple of minutes, causing excessive noise in the detector. All these effects are likely to impede a quantum network’s ability to distribute quantum information between a ground station and low Earth orbit satellite for approximately one transmission period. Afterwards, by the next satellite pass, normal operation is expected to resume. These results provide the operational capabilities of space-based optical quantum networks following a nuclear explosion. The model can be expanded to model satellite-based quantum networks in other harsh atmospheric environments

    Compiler Design for Distributed Quantum Computing

    Get PDF
    In distributed quantum computing architectures, with the network and communications functionalities provided by the Quantum Internet, remote quantum processing units (QPUs) can communicate and cooperate for executing computational tasks that single NISQ devices cannot handle by themselves. To this aim, distributed quantum computing requires a new generation of quantum compilers, for mapping any quantum algorithm to any distributed quantum computing architecture. With this perspective, in this paper, we first discuss the main challenges arising with compiler design for distributed quantum computing. Then, we analytically derive an upper bound of the overhead induced by quantum compilation for distributed quantum computing. The derived bound accounts for the overhead induced by the underlying computing architecture as well as the additional overhead induced by the sub-optimal quantum compiler--expressly designed through the paper to achieve three key features, namely, general-purpose, efficient and effective. Finally, we validate the analytical results and we confirm the validity of the compiler design through an extensive performance analysis

    Is instantaneous quantum Internet possible?

    Get PDF
    Instantaneous teleportation-the transmission and reconstruction over arbitrary distances of an unknown state without any type of disambiguation based on classical bits-is demonstrated, supporting the fact that instantaneous information transfer via an Einstein-Podolsky-Rosen channel is definitely possible. In other words, quantum correlations can be used to send signals, reinforcing the existence of an action at a distance, hence, paving the way for a better understanding of quantum entanglement and its consequent impact on Quantum Internet, as well as, on a realistic relationship between Special Relativity and Quantum Mechanics
    • …
    corecore