154 research outputs found

    Entangled Transformer for Image Captioning

    Full text link

    Evaluating the Performance of Transformer architecture over Attention architecture on Image Captioning

    Get PDF
    Over the last few decades computer vision and Natural Language processing has shown tremendous improvement in different tasks such as image captioning, video captioning, machine translation etc using deep learning models. However, there were not much researches related to image captioning based on transformers and how it outperforms other models that were implemented for image captioning. In this study will be designing a simple encoder-decoder model, attention model and transformer model for image captioning using Flickr8K dataset where will be discussing about the hyperparameters of the model, type of pre-trained model used and how long the model has been trained. Furthermore, will be comparing the captions generated by attention model and transformer model using BLEU score metrics, which will be further analysed using human evaluation conducted using intrinsic approach. After analysis of results obtained using statistical test conducted on BLEU score metrics and human evaluation it was found that transformer model with multi-head attention has outperformed attention model in image captioning

    Image Captioning through Image Transformer

    Get PDF
    Automatic captioning of images is a task that combines the challenges of image analysis and text generation. One important aspect in captioning is the notion of attention: How to decide what to describe and in which order. Inspired by the successes in text analysis and translation, previous work have proposed the \textit{transformer} architecture for image captioning. However, the structure between the \textit{semantic units} in images (usually the detected regions from object detection model) and sentences (each single word) is different. Limited work has been done to adapt the transformer's internal architecture to images. In this work, we introduce the \textbf{\textit{image transformer}}, which consists of a modified encoding transformer and an implicit decoding transformer, motivated by the relative spatial relationship between image regions. Our design widen the original transformer layer's inner architecture to adapt to the structure of images. With only regions feature as inputs, our model achieves new state-of-the-art performance on both MSCOCO offline and online testing benchmarks

    Image Captioning with Context-Aware Auxiliary Guidance

    Full text link
    Image captioning is a challenging computer vision task, which aims to generate a natural language description of an image. Most recent researches follow the encoder-decoder framework which depends heavily on the previous generated words for the current prediction. Such methods can not effectively take advantage of the future predicted information to learn complete semantics. In this paper, we propose Context-Aware Auxiliary Guidance (CAAG) mechanism that can guide the captioning model to perceive global contexts. Upon the captioning model, CAAG performs semantic attention that selectively concentrates on useful information of the global predictions to reproduce the current generation. To validate the adaptability of the method, we apply CAAG to three popular captioners and our proposal achieves competitive performance on the challenging Microsoft COCO image captioning benchmark, e.g. 132.2 CIDEr-D score on Karpathy split and 130.7 CIDEr-D (c40) score on official online evaluation server

    Synchronized audio-visual frames with fractional positional encoding for transformers in video-to-text translation

    Get PDF
    Video-to-Text (VTT) is the task of automatically generating descriptions for short audio-visual video clips, which can support visually impaired people to understand scenes of a YouTube video for instance. Transformer architectures have shown great performance in both machine translation and image captioning, lacking a straightforward and reproducible application for VTT. However, there is no comprehensive study on different strategies and advice for video description generation including exploiting the accompanying audio with fully self-attentive networks. Thus, we explore promising approaches from image captioning and video processing and apply them to VTT by developing a straightforward Transformer architecture. Additionally, we present a novel way of synchronizing audio and video features in Transformers which we call Fractional Positional Encoding (FPE). We run multiple experiments on the VATEX dataset to determine a configuration applicable to unseen datasets that helps describe short video clips in natural language and improved the CIDEr and BLEU-4 scores by 37.13 and 12.83 points compared to a vanilla Transformer network and achieve state-of-the-art results on the MSR-VTT and MSVD datasets. Also, FPE helps increase the CIDEr score by a relative factor of 8.6%

    Vision Transformer Based Model for Describing a Set of Images as a Story

    Full text link
    Visual Story-Telling is the process of forming a multi-sentence story from a set of images. Appropriately including visual variation and contextual information captured inside the input images is one of the most challenging aspects of visual storytelling. Consequently, stories developed from a set of images often lack cohesiveness, relevance, and semantic relationship. In this paper, we propose a novel Vision Transformer Based Model for describing a set of images as a story. The proposed method extracts the distinct features of the input images using a Vision Transformer (ViT). Firstly, input images are divided into 16X16 patches and bundled into a linear projection of flattened patches. The transformation from a single image to multiple image patches captures the visual variety of the input visual patterns. These features are used as input to a Bidirectional-LSTM which is part of the sequence encoder. This captures the past and future image context of all image patches. Then, an attention mechanism is implemented and used to increase the discriminatory capacity of the data fed into the language model, i.e. a Mogrifier-LSTM. The performance of our proposed model is evaluated using the Visual Story-Telling dataset (VIST), and the results show that our model outperforms the current state of the art models.Comment: This paper has been accepted at the 35th Australasian Joint Conference on Artificial Intelligence 2022 (Camera-ready version is attached

    Prefix-diffusion: A Lightweight Diffusion Model for Diverse Image Captioning

    Full text link
    While impressive performance has been achieved in image captioning, the limited diversity of the generated captions and the large parameter scale remain major barriers to the real-word application of these systems. In this work, we propose a lightweight image captioning network in combination with continuous diffusion, called Prefix-diffusion. To achieve diversity, we design an efficient method that injects prefix image embeddings into the denoising process of the diffusion model. In order to reduce trainable parameters, we employ a pre-trained model to extract image features and further design an extra mapping network. Prefix-diffusion is able to generate diverse captions with relatively less parameters, while maintaining the fluency and relevance of the captions benefiting from the generative capabilities of the diffusion model. Our work paves the way for scaling up diffusion models for image captioning, and achieves promising performance compared with recent approaches.Comment: 11 pages,4 figures, 6 table

    Efficient Modeling of Future Context for Image Captioning

    Full text link
    Existing approaches to image captioning usually generate the sentence word-by-word from left to right, with the constraint of conditioned on local context including the given image and history generated words. There have been many studies target to make use of global information during decoding, e.g., iterative refinement. However, it is still under-explored how to effectively and efficiently incorporate the future context. To respond to this issue, inspired by that Non-Autoregressive Image Captioning (NAIC) can leverage two-side relation with modified mask operation, we aim to graft this advance to the conventional Autoregressive Image Captioning (AIC) model while maintaining the inference efficiency without extra time cost. Specifically, AIC and NAIC models are first trained combined with shared visual encoders, forcing the visual encoder to contain sufficient and valid future context; then the AIC model is encouraged to capture the causal dynamics of cross-layer interchanging from NAIC model on its unconfident words, which follows a teacher-student paradigm and optimized with the distribution calibration training objective. Empirical evidences demonstrate that our proposed approach clearly surpass the state-of-the-art baselines in both automatic metrics and human evaluations on the MS COCO benchmark. The source code is available at: https://github.com/feizc/Future-Caption.Comment: ACM Multimedia 202

    Rethinking the Reference-based Distinctive Image Captioning

    Full text link
    Distinctive Image Captioning (DIC) -- generating distinctive captions that describe the unique details of a target image -- has received considerable attention over the last few years. A recent DIC work proposes to generate distinctive captions by comparing the target image with a set of semantic-similar reference images, i.e., reference-based DIC (Ref-DIC). It aims to make the generated captions can tell apart the target and reference images. Unfortunately, reference images used by existing Ref-DIC works are easy to distinguish: these reference images only resemble the target image at scene-level and have few common objects, such that a Ref-DIC model can trivially generate distinctive captions even without considering the reference images. To ensure Ref-DIC models really perceive the unique objects (or attributes) in target images, we first propose two new Ref-DIC benchmarks. Specifically, we design a two-stage matching mechanism, which strictly controls the similarity between the target and reference images at object-/attribute- level (vs. scene-level). Secondly, to generate distinctive captions, we develop a strong Transformer-based Ref-DIC baseline, dubbed as TransDIC. It not only extracts visual features from the target image, but also encodes the differences between objects in the target and reference images. Finally, for more trustworthy benchmarking, we propose a new evaluation metric named DisCIDEr for Ref-DIC, which evaluates both the accuracy and distinctiveness of the generated captions. Experimental results demonstrate that our TransDIC can generate distinctive captions. Besides, it outperforms several state-of-the-art models on the two new benchmarks over different metrics.Comment: ACM MM 202
    corecore