29 research outputs found

    Improving Classification When a Class Hierarchy is Available Using a Hierarchy-Based Prior

    Full text link
    We introduce a new method for building classification models when we have prior knowledge of how the classes can be arranged in a hierarchy, based on how easily they can be distinguished. The new method uses a Bayesian form of the multinomial logit (MNL, a.k.a. ``softmax'') model, with a prior that introduces correlations between the parameters for classes that are nearby in the tree. We compare the performance on simulated data of the new method, the ordinary MNL model, and a model that uses the hierarchy in different way. We also test the new method on a document labelling problem, and find that it performs better than the other methods, particularly when the amount of training data is small

    Large-scale image classification using ensembles of nested dichotomies

    Get PDF
    Many techniques to reduce the cost at test time in large-scale problems involve a hierarchical organization of classifiers, but are either too expensive to learn or degrade the classification performance. Conversely, in this work we show that using ensembles of randomized hierarchical decompositions of the original problem can both improve the accuracy and reduce the computational complexity at test time. The proposed method is evaluated in the ImageNet Large Scale Visual Recognition Challenge’10, with promising results.Peer ReviewedPostprint (author’s final draft

    A study of hierarchical and flat classification of proteins

    Get PDF
    Automatic classification of proteins using machine learning is an important problem that has received significant attention in the literature. One feature of this problem is that expert-defined hierarchies of protein classes exist and can potentially be exploited to improve classification performance. In this article we investigate empirically whether this is the case for two such hierarchies. We compare multi-class classification techniques that exploit the information in those class hierarchies and those that do not, using logistic regression, decision trees, bagged decision trees, and support vector machines as the underlying base learners. In particular, we compare hierarchical and flat variants of ensembles of nested dichotomies. The latter have been shown to deliver strong classification performance in multi-class settings. We present experimental results for synthetic, fold recognition, enzyme classification, and remote homology detection data. Our results show that exploiting the class hierarchy improves performance on the synthetic data, but not in the case of the protein classification problems. Based on this we recommend that strong flat multi-class methods be used as a baseline to establish the benefit of exploiting class hierarchies in this area

    Error-correcting codes and applications to large scale classification systems

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 37-39).In this thesis, we study the performance of distributed output coding (DOC) and error-Correcting output coding (ECOC) as potential methods for expanding the class of tractable machine-learning problems. Using distributed output coding, we were able to scale a neural-network-based algorithm to handle nearly 10,000 output classes. In particular, we built a prototype OCR engine for Devanagari and Korean texts based upon distributed output coding. We found that the resulting classifiers performed better than existing algorithms, while maintaining small size. Error-correction, however, was found to be ineffective at increasing the accuracy of the ensemble. For each language, we also tested the feasibility of automatically finding a good codebook. Unfortunately, the results in this direction were primarily negative.by Jeremy Scott Hurwitz.M.Eng

    How to develop, externally validate, and update multinomial prediction models

    Full text link
    Multinomial prediction models (MPMs) have a range of potential applications across healthcare where the primary outcome of interest has multiple nominal or ordinal categories. However, the application of MPMs is scarce, which may be due to the added methodological complexities that they bring. This article provides a guide of how to develop, externally validate, and update MPMs. Using a previously developed and validated MPM for treatment outcomes in rheumatoid arthritis as an example, we outline guidance and recommendations for producing a clinical prediction model using multinomial logistic regression. This article is intended to supplement existing general guidance on prediction model research. This guide is split into three parts: 1) Outcome definition and variable selection, 2) Model development, and 3) Model evaluation (including performance assessment, internal and external validation, and model recalibration). We outline how to evaluate and interpret the predictive performance of MPMs. R code is provided. We recommend the application of MPMs in clinical settings where the prediction of a nominal polytomous outcome is of interest. Future methodological research could focus on MPM-specific considerations for variable selection and sample size criteria for external validation
    corecore