136 research outputs found

    Simple Yet Surprisingly Effective Training Strategies for LSTMs in Sensor-Based Human Activity Recognition

    Full text link
    Human Activity Recognition (HAR) is one of the core research areas in mobile and wearable computing. With the application of deep learning (DL) techniques such as CNN, recognizing periodic or static activities (e.g, walking, lying, cycling, etc.) has become a well studied problem. What remains a major challenge though is the sporadic activity recognition (SAR) problem, where activities of interest tend to be non periodic, and occur less frequently when compared with the often large amount of irrelevant background activities. Recent works suggested that sequential DL models (such as LSTMs) have great potential for modeling nonperiodic behaviours, and in this paper we studied some LSTM training strategies for SAR. Specifically, we proposed two simple yet effective LSTM variants, namely delay model and inverse model, for two SAR scenarios (with and without time critical requirement). For time critical SAR, the delay model can effectively exploit predefined delay intervals (within tolerance) in form of contextual information for improved performance. For regular SAR task, the second proposed, inverse model can learn patterns from the time series in an inverse manner, which can be complementary to the forward model (i.e.,LSTM), and combining both can boost the performance. These two LSTM variants are very practical, and they can be deemed as training strategies without alteration of the LSTM fundamentals. We also studied some additional LSTM training strategies, which can further improve the accuracy. We evaluated our models on two SAR and one non-SAR datasets, and the promising results demonstrated the effectiveness of our approaches in HAR applications.Comment: 11 page

    Experimentation and Analysis of Ensemble Deep Learning in IoT Applications

    Get PDF
    This paper presents an experimental study of Ensemble Deep Learning (DL) techniques for the analysis of time series data on IoT devices. We have shown in our earlier work that DL demonstrates superior performance compared to traditional machine learning techniques on fall detection applications due to the fact that important features in time series data can be learned and need not be determined manually by the domain expert. However, DL networks generally require large datasets for training. In the health care domain, such as the real-time smartwatch-based fall detection, there are no publicly available large annotated datasets that can be used for training, due to the nature of the problem (i.e. a fall is not a common event). Moreover, fall data is also inherently noisy since motions generated by the wrist-worn smartwatch can be mistaken for a fall. This paper explores combing DL (Recurrent Neural Network) with ensemble techniques (Stacking and AdaBoosting) using a fall detection application as a case study. We conducted a series of experiments using two different datasets of simulated falls for training various ensemble models. Our results show that an ensemble of deep learning models combined by the stacking ensemble technique, outperforms a single deep learning model trained on the same data samples, and thus, may be better suited for small-size datasets

    Understanding and Improving Recurrent Networks for Human Activity Recognition by Continuous Attention

    Full text link
    Deep neural networks, including recurrent networks, have been successfully applied to human activity recognition. Unfortunately, the final representation learned by recurrent networks might encode some noise (irrelevant signal components, unimportant sensor modalities, etc.). Besides, it is difficult to interpret the recurrent networks to gain insight into the models' behavior. To address these issues, we propose two attention models for human activity recognition: temporal attention and sensor attention. These two mechanisms adaptively focus on important signals and sensor modalities. To further improve the understandability and mean F1 score, we add continuity constraints, considering that continuous sensor signals are more robust than discrete ones. We evaluate the approaches on three datasets and obtain state-of-the-art results. Furthermore, qualitative analysis shows that the attention learned by the models agree well with human intuition.Comment: 8 pages. published in The International Symposium on Wearable Computers (ISWC) 201

    A meta-learning algorithm for respiratory flow prediction from FBG-based wearables in unrestrained conditions

    Get PDF
    The continuous monitoring of an individual's breathing can be an instrument for the assessment and enhancement of human wellness. Specific respiratory features are unique markers of the deterioration of a health condition, the onset of a disease, fatigue and stressful circumstances. The early and reliable prediction of high-risk situations can result in the implementation of appropriate intervention strategies that might be lifesaving. Hence, smart wearables for the monitoring of continuous breathing have recently been attracting the interest of many researchers and companies. However, most of the existing approaches do not provide comprehensive respiratory information. For this reason, a meta-learning algorithm based on LSTM neural networks for inferring the respiratory flow from a wearable system embedding FBG sensors and inertial units is herein proposed. Different conventional machine learning approaches were implemented as well to ultimately compare the results. The meta-learning algorithm turned out to be the most accurate in predicting respiratory flow when new subjects are considered. Furthermore, the LSTM model memory capability has been proven to be advantageous for capturing relevant aspects of the breathing pattern. The algorithms were tested under different conditions, both static and dynamic, and with more unobtrusive device configurations. The meta-learning results demonstrated that a short one-time calibration may provide subject-specific models which predict the respiratory flow with high accuracy, even when the number of sensors is reduced. Flow RMS errors on the test set ranged from 22.03 L/min, when the minimum number of sensors was considered, to 9.97 L/min for the complete setting (target flow range: 69.231 Â± 21.477 L/min). The correlation coefficient r between the target and the predicted flow changed accordingly, being higher (r = 0.9) for the most comprehensive and heterogeneous wearable device configuration. Similar results were achieved even with simpler settings which included the thoracic sensors (r ranging from 0.84 to 0.88; test flow RMSE = 10.99 L/min, when exclusively using the thoracic FBGs). The further estimation of respiratory parameters, i.e., rate and volume, with low errors across different breathing behaviors and postures proved the potential of such approach. These findings lay the foundation for the implementation of reliable custom solutions and more sophisticated artificial intelligence-based algorithms for daily life health-related applications
    • …
    corecore