62 research outputs found

    A General Formula for the Mismatch Capacity

    Full text link
    The fundamental limits of channels with mismatched decoding are addressed. A general formula is established for the mismatch capacity of a general channel, defined as a sequence of conditional distributions with a general decoding metrics sequence. We deduce an identity between the Verd\'{u}-Han general channel capacity formula, and the mismatch capacity formula applied to Maximum Likelihood decoding metric. Further, several upper bounds on the capacity are provided, and a simpler expression for a lower bound is derived for the case of a non-negative decoding metric. The general formula is specialized to the case of finite input and output alphabet channels with a type-dependent metric. The closely related problem of threshold mismatched decoding is also studied, and a general expression for the threshold mismatch capacity is obtained. As an example of threshold mismatch capacity, we state a general expression for the erasures-only capacity of the finite input and output alphabet channel. We observe that for every channel there exists a (matched) threshold decoder which is capacity achieving. Additionally, necessary and sufficient conditions are stated for a channel to have a strong converse. Csisz\'{a}r and Narayan's conjecture is proved for bounded metrics, providing a positive answer to the open problem introduced in [1], i.e., that the "product-space" improvement of the lower random coding bound, Cq(∞)(W)C_q^{(\infty)}(W), is indeed the mismatch capacity of the discrete memoryless channel WW. We conclude by presenting an identity between the threshold capacity and Cq(∞)(W)C_q^{(\infty)}(W) in the DMC case

    Bit-Interleaved Coded Modulation Revisited: A Mismatched Decoding Perspective

    Get PDF
    We revisit the information-theoretic analysis of bit-interleaved coded modulation (BICM) by modeling the BICM decoder as a mismatched decoder. The mismatched decoding model is well-defined for finite, yet arbitrary, block lengths, and naturally captures the channel memory among the bits belonging to the same symbol. We give two independent proofs of the achievability of the BICM capacity calculated by Caire et al. where BICM was modeled as a set of independent parallel binary-input channels whose output is the bitwise log-likelihood ratio. Our first achievability proof uses typical sequences, and shows that due to the random coding construction, the interleaver is not required. The second proof is based on the random coding error exponents with mismatched decoding, where the largest achievable rate is the generalized mutual information. We show that the generalized mutual information of the mismatched decoder coincides with the infinite-interleaver BICM capacity. We also show that the error exponent -and hence the cutoff rate- of the BICM mismatched decoder is upper bounded by that of coded modulation and may thus be lower than in the infinite-interleaved model. We also consider the mutual information appearing in the analysis of iterative decoding of BICM with EXIT charts. We show that the corresponding symbol metric has knowledge of the transmitted symbol and the EXIT mutual information admits a representation as a pseudo-generalized mutual information, which is in general not achievable. A different symbol decoding metric, for which the extrinsic side information refers to the hypothesized symbol, induces a generalized mutual information lower than the coded modulation capacity.Comment: submitted to the IEEE Transactions on Information Theory. Conference version in 2008 IEEE International Symposium on Information Theory, Toronto, Canada, July 200

    Expurgated Bounds for the Asymmetric Broadcast Channel

    Full text link
    This work contains two main contributions concerning the expurgation of hierarchical ensembles for the asymmetric broadcast channel. The first is an analysis of the optimal maximum likelihood (ML) decoders for the weak and strong user. Two different methods of code expurgation will be used, that will provide two competing error exponents. The second is the derivation of expurgated exponents under the generalized stochastic likelihood decoder (GLD). We prove that the GLD exponents are at least as tight as the maximum between the random coding error exponents derived in an earlier work by Averbuch and Merhav (2017) and one of our ML-based expurgated exponents. By that, we actually prove the existence of hierarchical codebooks that achieve the best of the random coding exponent and the expurgated exponent simultaneously for both users
    • …
    corecore