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Bit-Interleaved Coded Modulation Revisited:
A Mismatched Decoding Perspective
Alfonso Martinez, Albert Guillén i Fàbregas, Giuseppe Caire and Frans Willems

Abstract— We revisit the information-theoretic analysis of bit-
interleaved coded modulation (BICM) by modeling the BICM
decoder as a mismatched decoder. The mismatched-decoding
model is well-defined for finite, yet arbitrary, block lengths,
and captures the channel memory among the bits belonging to
the same symbol. The generalized mutual information of the
mismatched decoder coincides with the infinite-interleaver BICM
capacity, where BICM is modeled as a set of independent parallel
binary-input channels whose output is the bitwise log-likelihood
ratio. The error exponent —and hence the cutoff rate— of the
BICM mismatched decoder is upper bounded by that of coded
modulation and may thus be lower than in the infinite-interleaved
model. For binary reflected Gray mapping in Gaussian channels
the loss in error exponent is small.

I. INTRODUCTION

The classical bit-interleaved coded modulation (BICM) de-

coder proposed by Zehavi in [1] uses metrics for each of the

bits of a symbol based on the channel observation, rather than

symbol metrics used in Ungerböck’s coded modulation (CM)

[2]. This decoder is sub-optimal and non-iterative, but offers

very good performance and is interesting from a practical

perspective due to its low implementation complexity.

Caire et al. [3] further elaborated on Zehavi’s decoder

and, under the assumption of an infinite-length interleaver,

presented and analyzed a BICM channel model as a set of

parallel independent binary-input output symmetric channels.

Based on the data processing theorem [4], Caire et al. showed

that the BICM mutual information cannot be larger than that

of CM. However, and rather surprisingly, the cutoff rate of

BICM can sometimes be larger than that of CM. The error

exponents for the parallel-channel model were studied in [5].

In this paper we take a closer look to the classical BICM

decoder proposed by Zehavi and cast it as a mismatched de-

coder [6–8]. The observation that the classical BICM decoder

treats the different bits in a given symbol as independent, even

if they are clearly not, naturally leads to a simple model of

the symbol mismatched decoding metric as the product of bit

decoding metrics, in turn related to the log-likelihood ratios.
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Without requiring any assumptions on the interleaver length,

we provide a per-symbol expression of the error exponent

using the BICM mismatched metric.
We show that the generalized mutual information [6–8] of

the BICM mismatched decoder yields the mutual information

derived in [3] for the independent parallel channel model,

giving a proof of achievability without assuming infinite

interleaving. In fact, the interleaver is not needed to achieve

this rate, as shown in [9], where an achievability proof with

typical sequences is provided. We also show that the BICM

error exponent (in particular the cutoff rate) is always upper-

bounded by that of CM, as opposed to the corresponding

exponent for the independent parallel channel model [3],

which can sometimes be larger. As we shall see, the exponent

loss is negligible for Gray mapping in Gaussian channels.
This paper is organized as follows. Section II introduces the

system model and notation. Section III shows general results

on the error exponents, including the generalized mutual

information and cutoff rate as particular instances. Section IV

studies the achievable rates of BICM under mismatched de-

coding. Numerical results and comparison with the parallel-

channel models are presented in Section V. Finally, Section VI

draws some concluding remarks.

II. DECODING MODEL

We consider transmission over a memoryless channel with

transition probabilities p(y|x), where x ∈ X , y ∈ Y denote

the channel input and output, respectively, and X ,Y are the

corresponding alphabets. We denote by X, Y the underlying

random variables. We consider a discrete input alphabet X =
{x1, . . . , xM}, with M

Δ= 2m = |X |. For future use, we

define the sequences x
Δ= (x1, . . . , xN ), y

Δ= (y1, . . . , yN ),
the corresponding random vectors by X and Y respectively,

and the input and output sets by X Δ= XN , Y Δ= YN .
For coded modulation schemes, encoding and mapping to a

modulation symbol are intertwined, so that the encoder output

directly corresponds to a modulation symbol. In bit-interleaved

coded modulation schemes, a binary labeling function μ :
{0, 1}m → X maps a binary codeword c of a binary code

C onto the signal constellation symbols. We define the sets

X j
b = {x ∈ X : bj(x) = b} as the set of signal constellation

points with bit b in the j-th position of the binary label, where

we have defined the inverse mapping function as for labeling

position j as bj : X → {0, 1}.
For later use, we define the j-th marginal pj(y|b) as

pj(y|b) Δ=
1

|X j
b |

∑
x′∈X j

b

p(y|x′). (1)
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Assuming equally likely codewords, the decoder is a func-

tion from the set Y to the space of codewords which estimates

the transmitted codeword x̂ as

x̂ = arg max
x

q(x,y) (2)

where q(x,y) is the codeword decoding metric. Since the

channel is memoryless, we assume a codeword metric of

the form q(x,y) =
∏N

n=1 q(xn, yn), namely the product of

symbol metrics.

In CM constructions, such as Ungerböck’s [2], the symbol

decoding metric is proportional to the channel transition prob-

ability, that is q(x, y) ∝ p(y|x). The value of proportionality

constant is irrelevant, as long as it is not zero.

In bit-interleaved CM, the natural model of the symbol

decoding metric is given by

q(x, y) =
m∏

j=1

qj

(
bj(x), y

)
(3)

where for each j = 1, . . . ,m, we have a bit decoding metric

qj

(
bj(x) = b, y

)
=

∑
x′∈X j

b

p(y|x′). (4)

The BICM decoder treats thus each of the m bits in a symbol

as if they were independent. In general, these bit metrics

are statistically dependent and the decoder uses a metric

proportional to the product of the marginals pj(y|b). These

marginals are the transition probabilities of m binary-input

channels, with respective input the j-th bit in the binary label

of the modulation symbol, and whose output is a log-likelihood

ratio, or more exactly a log-metric ratio.

In practice, due to complexity limitations, we might be

interested in the following lower-complexity version of (4),

qj(b, y) = max
x∈X j

b

p(y|x). (5)

In the log-domain this is known as the max-log approximation.

In either case, the explicit decoding rule of the BICM

decoder is therefore given by

x̂ = arg max
x

N∏
n=1

m∏
j=1

qj

(
bj(xn), yn

)
. (6)

A special channel model of particular interest is the complex

AWGN. The output is given by

Y = H
√

snrX + Z, (7)

where H is a complex-valued fading coefficient, Z a circularly

symmetric unit-variance complex Gaussian random variable,

and snr the signal-to-noise ratio (SNR). The input set X cor-

responds to unit energy PSK or QAM signal sets. Therefore,

p(y|x) =
1
π

e−|y−h
√

snrx|2 , x ∈ X .

Although all derivations are general, in this paper we assume

either an unfaded AWGN channel (obtained by letting H = 1
in the above) or a fully-interelaved Rayleigh fading AWGN

channel with perfect channel state information at the receiver.

There are many other interesting examples, like orthogo-

nal modulation, such as pulse-position modulation (PPM) or

frequency-shift keying (FSK) with coherent or non-coherent

detection, and the M -ary symmetric channel or the M -ary

erasure channel, or a combination of the two.

III. ERROR PROBABILITY WITH RANDOM CODES

A. Random coding exponent

The error probability of random codes under ML decoding,

i. e., for a decoding metric satisfying q(x, y) ∝ p(y|x),
was analyzed in [10] and used to prove the achievability

part of the channel coding theorem. In particular, Gallager

showed that there exist codes (in this case, random codes)

whose error probability vanishes for sufficiently large block

lengths provided that R < C. The error probability decreases

exponentially with the block length according to a parameter

called the error exponent. For memoryless channels Gallager

found [10] that the average error probability over the random

coding ensemble can be bounded as

P̄e ≤ exp
(
−N

(
E0(ρ) − ρR

))
(8)

where

E0(ρ) Δ= − log

⎛
⎝∑

y

(∑
x

p(x)p(y|x)
1

1+ρ

)1+ρ
⎞
⎠ (9)

is the Gallager function, and 0 ≤ ρ ≤ 1 is a free parameter. For

continuous outputs, the summation over y is replaced by an

integral. The tightest bound for a particular input distribution

p(X) is obtained by optimizing over ρ, which determines the

random coding exponent

Er(R) = max
0≤ρ≤1

E0(ρ) − ρR. (10)

Note that the random coding exponent admits a symbolwise,

or per letter, factorization when the channel is memoryless.
For memoryless channels and for codeword metrics de-

composable as product of symbols metrics, that is q(x, y) =∏N
n=1 q(xn, yn), Gallager’s derivation can easily be extended.

Details can be found in [7]. The error probability is upper

bounded by the expression

P̄e ≤ exp
(
−N

(
Eq

0(ρ, s) − ρR
))

, (11)

where the generalized Gallager function Eq
0(ρ, s) is given by

Eq
0(ρ, s) = − log E

[( ∑
x′∈X

p(x′)
q(x′, Y )s

q(X, Y )s

)ρ]
. (12)

For a particular input distribution p(X), the random coding

error exponent is then given by [7]

Eq
r (R) = max

0≤ρ≤1
max
s>0

Eq
0(ρ, s) − ρR. (13)

For a generic bit metric (3), Gallager’s generalized function

for BICM (assuming uniform inputs) is given by

Ebicm
0 (ρ, s) = − log E

⎡
⎣

⎛
⎝ 1

2m

∑
x′∈X

m∏
j=1

qj(bj(x′), Y )s

qj(bj(X), Y )s

⎞
⎠

ρ⎤
⎦ .

(14)
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B. Data processing inequality for error exponents
In [7], it was proved that the data-processing inequality

holds for error exponents, in the sense that for a given input

distribution we have that

Eq
0(ρ, s) ≤ E0(ρ) for any s > 0. (15)

For the sake of completeness, we next rederive this result

by extending Gallager’s reasoning in [10] to the mismatched

decoding regime. For a fixed channel observation y, the func-

tion inside the logarithm of the generalized Gallager function

Eq
0(ρ, s) can be rewritten as the summation over y of(∑

x∈X
p(x)p(y|x)q(x, y)−sρ

) ( ∑
x′∈X

p(x′)q(x′, y)s

)ρ

.

(16)

This form is reminiscent of the right-hand side of Hölder’s

inequality (see Exercise 4.15 of [10]), which can be writ-

ten as
(∑

i aibi

)1+ρ ≤ (∑
i a1+ρ

i

)(∑
i b

1+ρ
ρ

i

)ρ
. With the

identifications ai = p(x)
1

1+ρ p(y|x)
1

1+ρ q(x, y)
−sρ
1+ρ and bi =

p(x)
ρ

1+ρ q(x, y)
sρ

1+ρ , we can lower bound Eq. (16) by(∑
x∈X

p(x)p(y|x)
1

1+ρ

)1+ρ

. (17)

Recovering the summation over the channel output y and the

logarithm in Eq. (16), in general one has that Eq
0(ρ, s) ≤

E0(ρ) for arbitrary s > 0 and any input distribution.
Note that the expression in Eq. (17) is independent of

s and of the specific decoding metric q(x, y). Nevertheless,

evaluation of Gallager’s generalized function for the specific

choices s = 1
1+ρ and q(x, y) ∝ p(y|x) gives the lower bound,

which is also Eq. (9). This gives a sufficient condition for the

lower bound to be attained.

C. Independent parallel channels
In their analysis of multilevel coding and successive decod-

ing, Wachsmann et al. provided the error exponents of BICM

modelled as a set of parallel channels [5]. The corresponding

Gallager function, denoted by Eind
0 (ρ), can be written as

Eind
0 (ρ) = −

m∑
j=1

log E

[(
1
2

1∑
b′=0

pj(Y |b′) 1
1+ρ

pj(Y |B)
1

1+ρ

)ρ]
(18)

which corresponds to the sum of m binary-input parallel

channels with output y and bit metric matched to the transition

probability pj(y|b).
This channel is only directly related to the original channel

p(y|x) whenever the channel output can be decomposed into

parallel, independent outputs. Otherwise, since all subchannels

are affected by the same noise realization y, the parallel-

channel model fails to capture the statistics of the true channel.

We will later provide examples for which it is either larger or

smaller than the original error exponent, i. e. Eind
0 (ρ, s) >

E0(ρ) or Eind
0 (ρ, s) < E0(ρ) for suitable values of s. The

sum can thus be seen as the error exponent of a different

channel, obtained by replicating the original channel m times;

this channel may be more or less noisy than the original one,

depending on the form of the transition probability p(y|x).

D. Generalized mutual information

The largest achievable rate with mismatched decoding is not

known in general. Perhaps the easiest candidate to deal with

is the generalized mutual information (GMI)[6–8], given by

Igmi(X; Y ) = sup
s>0

Igmi
s (X; Y ), (19)

where

Igmi
s (X; Y ) = E

[
log

q(X, Y )s∑
x′∈X p(x′)q(x′, Y )s

]
. (20)

As in the case of matched decoding, this definition can be

recovered from the error exponent,

Igmi
s (X; Y ) =

dEq
0(ρ, s)
dρ

∣∣∣∣∣
ρ=0

. (21)

For completeness, we define the generalized cutoff rate as

R0
Δ= Er(R = 0) = max

s>0
E0(1, s). (22)

From (15), the generalized cut-off rate is upperbounded by the

cut-off rate of the matched decoder.

For uniform input distribution, we define the coded modu-
lation exponent Ecm

0 (ρ) as the exponent of a decoder which

uses metrics q(x, y) ∝ p(y|x), namely

Ecm
0 (ρ) = − log E

[(
1

2m

∑
x′

(
p(x′, Y )
p(X, Y )

) 1
1+ρ

)ρ]
. (23)

Note that this expression is equal to (9) with uniform inputs.

This decoder achieves the rate coded modulation capacity
Icm(X; Y ), given by

Icm(X; Y ) = E

[
log

p(Y |X)
1

2m

∑
x′∈X p(Y |x′)

]
. (24)

IV. ACHIEVABLE RATES WITH BICM DECODING

In this section we study the achievable rates of the BICM

decoder. By using mismatched decoding, we apply the results

from the previous section, and elaborate on the generalized

mutual information. In particular, we show that the generalized

mutual information is equal to the BICM capacity of [3] when

the metric (4) is used. As we have seen in the previous section,

the BICM decoder uses a metric of the form given in Eq. (3).

We have the following results.

Theorem 4.1: The generalized mutual information of the

BICM mismatched decoder is equal to the sum of the gen-

eralized mutual informations of the independent binary-input

parallel channel model of BICM,

Igmi(X; Y ) = sup
s>0

m∑
j=1

E

[
log

qj(b, Y )s

1
2

∑1
b′=0 qj(b′, Y )s

]
. (25)

Proof: For a given s, and uniform inputs, i.e., p(x) = 1
2m ,

Eq. (20) gives

Igmi
s (X; Y ) = E

[
log

∏m
j=1 qj

(
bj(X), Y

)s∑
x′∈X

1
2m

∏m
j=1 qj

(
bj(x′), Y

)s

]
.

(26)
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We now have a closer look at the denominator in the logarithm

of (26). The key observation here is that the sum over the con-

stellation points of the product over the binary label positions

can be expressed as the product over the label position of the

sum of the probabilities of the bits being zero and one, i.e.,

∑
x′∈X

1
2m

m∏
j=1

qj

(
bj(x′), Y

)s
(27)

=
1

2m

m∏
j=1

(
qj(b′ = 0, Y )s + qj(b′ = 1, Y )s

)
(28)

=
m∏

j=1

(
1
2
(
qj(b′ = 0, Y )s + qj(b′ = 1, Y )s

))
. (29)

Rearranging terms in (26) we obtain,

Igmi
s (X; Y ) (30)

= E

⎡
⎣ m∑

j=1

log
qj

(
bj(x), Y

)s

1
2

(
qj(b′ = 0, Y )s + qj(b′ = 1, Y )s

)
⎤
⎦ (31)

=
m∑

j=1

1
2m

1∑
b=0

∑
x∈X j

b

EY |B=b,J=j

[
log

qj

(
bj(x), Y

)s

1
2

∑1
b′=0 qj(b′, Y )s

]
.

(32)

There are a number of interesting particular cases of the

above theorem.

Corollary 4.1: For the metric in Eq. (4),

Igmi(X; Y ) =
m∑

j=1

E

[
log

pj(Y |B)
1
2

∑1
b′=0 pj(Y |b′)

]
(33)

Proof: For the metric in Eq. (4), qj(b, y) is proportional

to pj(y|b), and we can therefore identify the quantity

E

[
log

qj

(
B, Y

)s

1
2

∑1
b′=0 qj(b′, Y )s

]
(34)

as the generalized mutual information of a matched binary-

input channel with transitions pj(y|b). Then, the supremum

over s is achieved at s = 1 and we get the desired result.

Expression (33) coincides with the result in [3], even though

we have lifted the assumption of infinite interleaving. More-

over, this analysis immediately provides a coding theorem

showing the achievability of the BICM capacity, which was

not provided in [3]. An achievability proof based on typical

sequences was provided in [9].

Corollary 4.2: For the metric in Eq. (5),

Igmi(X; Y )

= sup
s>0

m∑
j=1

E

[
log

(
maxx∈XB

j
p(y|x)

)s

1
2

∑1
b=0

(
maxx′∈X j

b
p(y|x′)

)s

]
. (35)

The fundamental difference between the mutual information

given in [11] and the generalized mutual information given in

(35) is the optimization over s. In particular, both expressions

are equal when s = 1. Therefore, the optimization over s may

induce a larger achievable rate. Furthermore, as we shall see in

the examples, letting s = 1 in the mismatched error exponent

yields significant degradation.

V. NUMERICAL RESULTS

In this section we show a number of examples illustrating

the error exponents of BICM and CM in AWGN channels

with and without fading, at different SNR values. Figures 1(a),

1(b) and 1(c) show the error exponents for CM (solid), BICM

with independent parallel channels (dashed), BICM using

mismatched metric (4) (dash-dotted), and BICM using mis-

matched metric (5) (dotted) for 16-QAM with Gray mapping,

Rayleigh fading and snr = 5, 15,−25 dB, respectively. Dotted

lines labeled with s = 1
1+ρ correspond to the error exponent

of BICM using mismatched metric (5) letting s = 1
1+ρ , i.e.,

without optimizing over s. As we observe, some penalty is

incurred at low snr for not optimizing over s. At medium-

to-large snr, the optimized exponent and that with s = 1
1+ρ

are almost equal. We further observe that the parallel channel

model gives a larger exponent than the CM, in agreement

with the cutoff rate results of [3]. Instead, assuming a finite-

length interleaver without neglecting the dependency between

the different bits yields a lower exponent than CM.

We also remark that using the metric (5) yields marginal

loss in the exponent for mid-to-large SNR, while both models

(independent parallel channels and finite-length interleaver

with mismatched decoding) yield the same capacity. When

the SNR is low, i.e., in the wideband regime [12], we observe

that the independent parallel channel model and BICM using

the mismatched metric (4) have the same exponent, while we

observe a significant penalty when metrics (5) are used. We

denote with crosses the corresponding information rates.

An interesting question is whether the independent parallel

channel error exponent is always larger than that of BICM us-

ing mismatched decoding. To illustrate this point, Figure 1(d)

shows the error exponents for CM (solid), BICM with inde-

pendent parallel channels (dashed), BICM using mismatched

metric (4) (dash-dotted), and BICM using mismatched metric

(5) (dotted) for 8-PSK with Gray mapping in the unfaded

AWGN channel. As we can see, the error exponent obtained

from the parallel channel model can indeed be smaller.

VI. CONCLUSIONS

We have presented an analysis of BICM by casting the

BICM decoder as a mismatched decoder. While the indepen-

dent parallel channel models give the BICM mutual infor-

mation [3, 5], they fail to capture the dependency among the

different bits of a symbol. The characterization of the BICM

decoder as a mismatched decoder captures the dependency

between the different bits in a symbol, and to some extent

(for random codes at least), of finite-length interleaving. We

have shown that the error exponent cannot be larger than

that of CM, contrary to the analysis of BICM as a set of

independent parallel channels. As a consequence our analysis,

the cutoff rate cannot be larger than that of CM. Note

that the conclusions of [3] are purely based on the analysis

of the parallel channel model which inherently ignores the

dependency between the m bits of a symbol, and for which,

the cutoff rate could be larger than that of CM. For Gaussian

channels with binary reflected Gray mapping, the gap between

the BICM and CM error exponents is small, as found by Caire

et al. [3] for the capacity.
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(c) 16-QAM, Rayleigh fading and snr = −25 dB. Crosses correspond to
(from right to left) CM, BICM with metric (4), BICM with metric (5) and
BICM with metric (5) with s = 1.
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(d) 8-PSK, AWGN without fading, and snr = 5 dB.

Fig. 1. Error exponents for CM (solid), BICM with independent parallel channels (dashed), BICM using mismatched metric (4) (dash-dotted), and BICM
using mismatched metric (5) (dotted) for various modulations with Gray mapping, in AWGN channels with and without Rayleigh fading.
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