8,681 research outputs found

    Co-regularized Alignment for Unsupervised Domain Adaptation

    Full text link
    Deep neural networks, trained with large amount of labeled data, can fail to generalize well when tested with examples from a \emph{target domain} whose distribution differs from the training data distribution, referred as the \emph{source domain}. It can be expensive or even infeasible to obtain required amount of labeled data in all possible domains. Unsupervised domain adaptation sets out to address this problem, aiming to learn a good predictive model for the target domain using labeled examples from the source domain but only unlabeled examples from the target domain. Domain alignment approaches this problem by matching the source and target feature distributions, and has been used as a key component in many state-of-the-art domain adaptation methods. However, matching the marginal feature distributions does not guarantee that the corresponding class conditional distributions will be aligned across the two domains. We propose co-regularized domain alignment for unsupervised domain adaptation, which constructs multiple diverse feature spaces and aligns source and target distributions in each of them individually, while encouraging that alignments agree with each other with regard to the class predictions on the unlabeled target examples. The proposed method is generic and can be used to improve any domain adaptation method which uses domain alignment. We instantiate it in the context of a recent state-of-the-art method and observe that it provides significant performance improvements on several domain adaptation benchmarks.Comment: NIPS 2018 accepted versio

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Adversarial Dropout for Supervised and Semi-supervised Learning

    Full text link
    Recently, the training with adversarial examples, which are generated by adding a small but worst-case perturbation on input examples, has been proved to improve generalization performance of neural networks. In contrast to the individually biased inputs to enhance the generality, this paper introduces adversarial dropout, which is a minimal set of dropouts that maximize the divergence between the outputs from the network with the dropouts and the training supervisions. The identified adversarial dropout are used to reconfigure the neural network to train, and we demonstrated that training on the reconfigured sub-network improves the generalization performance of supervised and semi-supervised learning tasks on MNIST and CIFAR-10. We analyzed the trained model to reason the performance improvement, and we found that adversarial dropout increases the sparsity of neural networks more than the standard dropout does.Comment: submitted to AAAI-1
    • …
    corecore