3,544 research outputs found

    Mining Frequency of Drug Side Effects Over a Large Twitter Dataset Using Apache Spark

    Get PDF
    Despite clinical trials by pharmaceutical companies as well as current FDA reporting systems, there are still drug side effects that have not been caught. To find a larger sample of reports, a possible way is to mine online social media. With its current widespread use, social media such as Twitter has given rise to massive amounts of data, which can be used as reports for drug side effects. To process these large datasets, Apache Spark has become popular for fast, distributed batch processing. In this work, we have improved on previous pipelines in sentimental analysis-based mining, processing, and extracting tweets with drug-caused side effects. We have also added a new ensemble classifier using a combination of sentiment analysis features to increase the accuracy of identifying drug-caused side effects. In addition, the frequency count for the side effects is also provided. Furthermore, we have also implemented the same pipeline in Apache Spark to improve the speed of processing of tweets by 2.5 times, as well as to support the process of large tweet datasets. As the frequency count of drug side effects opens a wide door for further analysis, we present a preliminary study on this issue, including the side effects of simultaneously using two drugs, and the potential danger of using less-common combination of drugs. We believe the pipeline design and the results present in this work would have great implication on studying drug side effects and on big data analysis in general

    Amobee at IEST 2018: Transfer Learning from Language Models

    Full text link
    This paper describes the system developed at Amobee for the WASSA 2018 implicit emotions shared task (IEST). The goal of this task was to predict the emotion expressed by missing words in tweets without an explicit mention of those words. We developed an ensemble system consisting of language models together with LSTM-based networks containing a CNN attention mechanism. Our approach represents a novel use of language models (specifically trained on a large Twitter dataset) to predict and classify emotions. Our system reached 1st place with a macro F1\text{F}_1 score of 0.7145.Comment: 7 pages, accepted to the 9th WASSA Workshop, part of the EMNLP 2018 Conference; added links to open-source materia

    Adversarial Removal of Demographic Attributes from Text Data

    Full text link
    Recent advances in Representation Learning and Adversarial Training seem to succeed in removing unwanted features from the learned representation. We show that demographic information of authors is encoded in -- and can be recovered from -- the intermediate representations learned by text-based neural classifiers. The implication is that decisions of classifiers trained on textual data are not agnostic to -- and likely condition on -- demographic attributes. When attempting to remove such demographic information using adversarial training, we find that while the adversarial component achieves chance-level development-set accuracy during training, a post-hoc classifier, trained on the encoded sentences from the first part, still manages to reach substantially higher classification accuracies on the same data. This behavior is consistent across several tasks, demographic properties and datasets. We explore several techniques to improve the effectiveness of the adversarial component. Our main conclusion is a cautionary one: do not rely on the adversarial training to achieve invariant representation to sensitive features

    TwiSE at SemEval-2016 Task 4: Twitter Sentiment Classification

    Full text link
    This paper describes the participation of the team "TwiSE" in the SemEval 2016 challenge. Specifically, we participated in Task 4, namely "Sentiment Analysis in Twitter" for which we implemented sentiment classification systems for subtasks A, B, C and D. Our approach consists of two steps. In the first step, we generate and validate diverse feature sets for twitter sentiment evaluation, inspired by the work of participants of previous editions of such challenges. In the second step, we focus on the optimization of the evaluation measures of the different subtasks. To this end, we examine different learning strategies by validating them on the data provided by the task organisers. For our final submissions we used an ensemble learning approach (stacked generalization) for Subtask A and single linear models for the rest of the subtasks. In the official leaderboard we were ranked 9/35, 8/19, 1/11 and 2/14 for subtasks A, B, C and D respectively.\footnote{We make the code available for research purposes at \url{https://github.com/balikasg/SemEval2016-Twitter\_Sentiment\_Evaluation}.
    • …
    corecore