3,503 research outputs found

    Finite Element Quadrature of Regularized Discontinuous and Singular Level Set Functions in 3D Problems

    Get PDF
    Regularized Heaviside and Dirac delta function are used in several fields of computational physics and mechanics. Hence the issue of the quadrature of integrals of discontinuous and singular functions arises. In order to avoid ad-hoc quadrature procedures, regularization of the discontinuous and the singular fields is often carried out. In particular, weight functions of the signed distance with respect to the discontinuity interface are exploited. Tornberg and Engquist (Journal of Scientific Computing, 2003,19: 527-552) proved that the use of compact support weight function is not suitable because it leads to errors that do not vanish for decreasing mesh size. They proposed the adoption of non-compact support weight functions. In the present contribution, the relationship between the Fourier transform of the weight functions and the accuracy of the regularization procedure is exploited. The proposed regularized approach was implemented in the eXtended Finite Element Method. As a three-dimensional example, we study a slender solid characterized by an inclined interface across which the displacement is discontinuous. The accuracy is evaluated for varying position of the discontinuity interfaces with respect to the underlying mesh. A procedure for the choice of the regularization parameters is propose

    Enhanced goal-oriented error assessment and computational strategies in adaptive reduced basis solver for stochastic problems

    Get PDF
    This work focuses on providing accurate low-cost approximations of stochastic ¿nite elements simulations in the framework of linear elasticity. In a previous work, an adaptive strategy was introduced as an improved Monte-Carlo method for multi-dimensional large stochastic problems. We provide here a complete analysis of the method including a new enhanced goal-oriented error estimator and estimates of CPU (computational processing unit) cost gain. Technical insights of these two topics are presented in details, and numerical examples show the interest of these new developments.Postprint (author's final draft

    Numerical simulation of the dynamic response in pulse-loaded fibre-metal-laminated plates

    Get PDF
    This article presents a three-dimensional constitutive model to replicate the dynamic response of blastloaded fibre–metal laminates made of 2024-0 aluminium alloy and woven composite (glass fibre–reinforced polypropylene). Simulation of the dynamic response is challenging when extreme localised loads are of concern and requires reliable material constitutive models as well as accurate modelling techniques. It is well known that back layers in a fibre–metal laminate provide structural support for front layers; thus, proper modelling of constituent failure and degradation is essential to understanding structural damage and failure. The improved developed model to analyse damage initiation, progression and failure of the composite is implemented in finite element code ABAQUS, and a good correlation is observed with experimental results for displacements of the back and front faces as presented by other researchers. The model was also able to predict accurately the tearing impulses. Finally, the concepts of the ‘efficiency of the charge’ and ‘effectiveness of the target’ are proposed in the context of localised blast loading on a structure. Dimensionless parameters are introduced to quantify these parameters

    A partitioned model order reduction approach to rationalise computational expenses in multiscale fracture mechanics

    Get PDF
    We propose in this paper an adaptive reduced order modelling technique based on domain partitioning for parametric problems of fracture. We show that coupling domain decomposition and projection-based model order reduction permits to focus the numerical effort where it is most needed: around the zones where damage propagates. No \textit{a priori} knowledge of the damage pattern is required, the extraction of the corresponding spatial regions being based solely on algebra. The efficiency of the proposed approach is demonstrated numerically with an example relevant to engineering fracture.Comment: Submitted for publication in CMAM

    Topological vortices in generalized Born-Infeld-Higgs electrodynamics

    Full text link
    A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via introduction of three non-negative functions depending only in the Higgs field, namely, G(ϕ)G(|\phi|), w(ϕ)w(|\phi|) and V(ϕ)V(|\phi|). A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampere law. Such a constraint allows to minimize the system energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models such that a generalized version of Maxwell-Higgs electrodynamics is recovered in a certain limit of the theory.Comment: 8 pages, 8 figures, to appear in EPJ
    corecore