

 Swansea University E-Theses ___

The algebraic specification of spatial data types with applications to

constructive volume geometry.

Johnson, Kenneth Harold Anthony

 How to cite: ___
Johnson, Kenneth Harold Anthony (2007) The algebraic specification of spatial data types with applications to

constructive volume geometry.. thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42232

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42232
http://www.swansea.ac.uk/library/researchsupport/ris-support/

T he A lgebraic Specification of S p a tia l D a ta
T ypes w ith A pplications to C o n s tru c t iv e

Volume G eom etry

Kenneth Harold Anthony Johnson

A thesis subm itted to the University of W ales in fulfilment
of the requirements for the Degree of Doctor of Philosophy.

Department of Computer Science
Swansea University

Spring 2007

ProQuest Number: 10797940

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10797940

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

f ' %
S LIBRARY &

To my parents

Abstract

Spatial objects are modelled as total functions, mapping a topological space
of points to a topological algebra of data attributes. High-level operations on
these spatial objects form algebras of spatial objects, which model spatial data
types. This thesis presents a comprehensive account of the theory of spatial
data types.

The motivation behind the general theory is Constructive Volume Geometry
(CVG). CVG is an algebraic framework for the specification, representation
and manipulation of graphics objects in 3D. By using scalar fields as the basic
building blocks, CVG gives an abstract representation of spatial objects, with
the goal of unifying the many representations of objects used in 3D computer
graphics today.

The general theory developed in this thesis unifies discrete and continuous
spatial data, and the many examples where such data is used - from computer
graphics to hardware design.

Such a theory is built from the algebraic and topological properties of spatial
data types. We examine algebraic laws, approximation methods, and finiteness
and computability for general spatial data types. We show how to apply the
general theory to modelling (i) hardware and (ii) CVG.

We pose the question “Which spatial objects can be represented in the alge­
braic framework developed for spatial data types?”. To answer such a question,
we analyse the expressive power of our algebraic framework. Applying our
results to the CVG framework yields a new result: We show any CVG spatial
object can be approximated by way of CVG terms, to arbitrary accuracy.

D eclaration

This work has not been previously accepted in substance for any degree
and is not being concurrently submitted injcaiididature for any degree.

Signed ^ ^ .. (candidate)

Date . .1 3 ^ . A Q b .2

Statem ent 1
This thesis is the result of my own investigations, except where otherwise

stated. Other sources are acknowledged by footnotes giving explicit references.
A bibliography is appended.

Signed .. — ... (candidate)

Date l.# Ct.....2..D.O.7

Statem ent 2
I hereby give my consent for my thesis, if accepted, to be available for

photocopying and for inter-library loan, and for the title and summary to be
made available to oufside organisations.

Signed (candidate)

Date

Acknowledgments

I have relied on many people for help and support while preparing this
thesis, and I would like to take this opportunity to thank them.

My mother and father deserve the most thanks. W ithout their love and
support I simply could not have completed this thesis. Extra special thanks
goes to Susanne Linz and her family for making me feel welcome in their
home. I owe a great deal to my extended family both in Canada and here
in the UK: Beverly Haley and Andrea Cassidy, The Cabin Boys Ed and Tom
Coules and Dean O’Grady, Harry and Colleen Johnson, Dennis and Marian
O’Grady. Thank you to Ian and Brian Johnson for always making me feel
welcome in Birmingham, and giving me a “home away from home” . To all my
friends in Canada and in the UK: Nasim Akhtar, Ian Armstrong, Steven Bal­
lard, Scott Brown, Dan Byers, Marc Cezer, Curtis Cram, Zoe Fisher, Zelin Li,
Liam McCarthy, Katie Milosek, Tara and the Neville family, Pamela Schmidt,
Christine Stender, Christal Stewart, Derek and the Visutski family. Thanks
to The Catholic Society at UWS and the Catholic Community at St. David’s
Church, Swansea for their support throughout the years. Thanks to the staff
at the accommodation office at the university, particularly Nik Harding and
Debbie Saunders. Thank you to the Department of Computer Science at the
University of Wales, Swansea for providing an excellent environment in which
to study, research and be a student. I would especially like to thank Alfie
Abdul-Rahman, Ulrich Berger, Jens Blanck, Min Chen, Lyndsey Clarke, Jill
Edwards, Will Harwood, Markus Michelbrink, and Jeffery Zucker for some in­
sightful conversations throughout the years here in Swansea. Thank you to the
Engineering and Physical Sciences Research Council (EPSRC) for funding my
research via the grant Constructive Volume Geometry - a Fundamental Mod­
elling Methodology For Volume Graphics Reference: GR/R25286/01 held by
Professors Min Chen and John Tucker. Thank you to Min Chen who provided
the graphics for the Constructive Volume Geometry chapter.

Thank you to my supervisor John V Tucker for continued support and
friendship throughout the years.

Contents

List o f Figures x

List o f Tables xi

1 Introduction 1
1.1 ’ W hat Are Spatial O bjects?.. 1

1.2 Constructive Volume G e o m e try ... 1

1.3 The Completeness Problem ... 2

1.4 Aim of T h e s is ... 3
1.5 Thesis O utline... 4

2 Volume Graphics and Constructive Volume G eom etry 7
2.1 In troduction .. 7
2 . 2 Scalars and Scalar F ie ld s .. 8

2 .2 . 1 Operations on Scalars .. 8

2.2.2 Equational Laws on S c a la r s ... 8

2.2.3 Additional O p e ra tio n s .. 10
2.2.4 Scalar F ields... 10
2.2.5 Equational Laws on Scalar F ie ld s 11

2.3 Spatial Objects and Their O perations.. 13
2.3.1 Operations on Spatial O b jec ts ... 15
2.3.2 Data Representation in CVG ... 16

2.4 Classes of CVG Spatial O b je c ts .. 17
2.4.1 Opacity-Only M o d e l ... 17
2.4.2 The Boolean-Only Opacity Model and C S G 19
2.4.3 The 4-Colour Channel M o d e l ... 2 1

2.5 Notes and Sources ... ,....................... 23

3 Algebraic and Topological Preliminaries 25
3.1 In troduction .. 25
3.2 Many-Sorted A lg e b ra s ... 25

3.2.1 The Import C o n s tru c t .. 27
3.2.2 S ubalgebras... 28

3.3 Many-Sorted T erm s... 28

vi

CONTENTS vii

3.4 Commutative R ings... 30
3.5 Vector S p a c e s ... 31
3.6 Ordered Sets ... 32
3.7 Algebraic C o n s tru c tio n s ... 33

3.7.1 Products of E-Algebras... 34
3.7.2 General Construction of an Inverse S y stem 35

3.8 Topology... 36
3.8.1 Separation A x io m s .. 38
3.8.2 Compact Spaces and Dense S e ts ... 38
3.8.3 The Product T opology ... 39
3.8.4 Metrics and D is tan ce ... 40
3.8.5 Continuity and Uniform C on tinu ity 41

3.9 Comparison of Algebras and Topological S p a c e s 42
3.9.1 Homomorphisms and Isom orphism s.................................... 42
3.9.2 Homeomorphisms... 43
3.9.3 Topological A lg eb ras ... 43

3.10 Notes and Sources ... 43

4 T h e A lgeb ra of S patia l O b jec ts 44
4.1 In troduction .. 44
4.2 Algebras of Spatial Objects ... 45

4.2.1 Spatial O b je c ts .. 45
4.2.2 Pointwise Data Operations on Spatial O b je c ts50
4.2.3 Pointwise Space Operations on Spatial Objects 53
4.2.4 Covariance and C o n travariance... 54
4.2.5 The Evaluation and Substitution Operators 55
4.2.6 Subalgebras of F(X, A) .. 57

4.3 T e r m s .. 58
4.3.1 Term E v a lu a tio n ... 59
4.3.2 Pointwise Lifting of Term Equivalence 60
4.3.3 Equational Validation .. 61
4.3.4 Pointwise Lifting of Commutative R i n g s 64
4.3.5 Term Definable F u n c tio n s ... 6 6

4.4 Pointwise Lifting of Lattices to F(X, A) 70
4.4.1 The Pointwise Lifting of L a t t i c e s .. 71
4.4.2 Sublattices.. 72

4.5 Applications to C V G .. 73
4.5.1 CSG Embedded in C V G ... 74

4.6 Notes and Sources .. 75

5 S pa tia l O b jec ts O ver D iscrete Space 76
5.1 In troduction ... 76
5.2 Properties of the Topology on F(X, A) .. 79

5.2.1 Separation .. 79

CONTENTS viii

5.2.2 Density ... 79
5.3 Continuous Operators of F(X, A) ... 81

5.3.1 Continuity of Evaluation and S u b s titu tio n 81
5.3.2 Continuity of Pointwise Lifting ... 82

5.4 Modelling Abstract Memories and M ach in es 85
5.4.1 The SERM Computational M odel...................................... 8 6

5.4.1.1 The Syntax of SERM P rogram s............................ 8 6

5.4.2 S t a t e s .. 8 8

5.4.2. 1 Special S ta te s ... 90
5.4.3 A Programming Example ... 91
5.4.4 Operational S em an tics ... 91
5.4.5 The Local Computation T h eo rem 93
5.4.6 Input/O utput Sem antics.. 95

5.4.6.1 SERM Computable Functions................................ 96
5.5 Parallel SERM ... 97

5.5.1 A Programming Example ... 98
5.6 Notes and Sources ... 99

6 Spatial Objects Over Continuous Space 101
6.1 In troduction .. 101
6 . 2 Continuous Spatial Objects ... 102
6.3 The Compact-Open Topology on C(X, A) 102
6.4 Properties of the Compact-Open T opology104

6.4.1 Composition... 104
6.4.2 Evaluation.. 106
6.4.3 Covariant and Contravariant O p e ra tio n s108
6.4.4 The Discrete Topology on A .. 109

6.4.4. 1 C om pactness..109
6.5 The Topological Algebra of C(A, A) ...110

6.5.1 S ubstitu tion ... 113
6 . 6 The Topology of Uniform Convergence.. 114

6.6.1 The Compact-Open Topology on C(K, R) 114
6.7 Equational Validity on C(X, A) ...116
6 . 8 Inverse Limits of Topological E -A lgebras... 117

6.8.1 A Topology on the Inverse Limit ...117
6 .8 . 2 An Inverse System on the Compact Subsets of A 118

6.9 Notes and Sources .. 1 2 2

7 Expressiveness and Com pleteness 123
7.1 In troduction.. 123
7.2 The Expressiveness and Completeness P ro b lem s............................ 124
7.3 The Stone-Weierstrass T heo rem ... 125

7.3.1 The Sublattice C(A, R) ...126
7.3.2 Dense Lattices of C (K , K) ..127

CONTENTS ix

7.3.3 The Stone-Weierstrass Algebra .. 129
7.3.4 The Absolute Value F u n c t io n ..131
7.3.5 The Ma x and M i n F u n c tio n s ..132
7.3.6 The Stone-Weierstrass Theorem for R133

7.4 Extensions of the Stone-Weierstrass Theorem135
7.4.1 The Stone-Weierstrass Theorem Over [0 ,1]135
7.4.2 The Stone-Weierstrass Theorem Over m + n Dimensions 138
7.4.3 The Stone-Weierstrass Over A Normed Vector Space . . 141

7.4.3.1 Continuous Partitions of U n i t y142
7.5 Stone-Weierstrass Applied to C V G ...144

7.5.1 Volumetric O b je c ts .. 144
7.5.2 The 4-Colour Channel M o d e l ..144

7.6 A d e q u a c y ..147
7.7 Dense subsets of C (X ,R), X non-com pact......................................148

7.7.1 Homomorphisms and the Inverse L im i t148
7.7.2 Approximation on C(X, R), X non -com pact......................149

7.8 Notes and Sources ..151

8 Conclusion 152
8 . 1 Possible D irec tio n s ..153

Bibliography 155

List of Figures

2 . 1 Tree Representation of CVG Term t .. 15
2 . 2 Composition of objects with data from a variety of sources . . . 16
2.3 The union of two E4 CC spatial objects Oi and 0 2 22
2.4 4CC Operations with two E 4 CC spatial objects Ox and o2 23

6.1 Composition of functions... 105
6 . 2 Commutative Diagram For E v a lu a tio n .. 107
6.3 A thread (/) in the inverse limit...120

7.1 Examples of E siv-algebras...130
7.2 Producing a dense subset of C(K, R) ... 140
7.3 A homomorphism from C (X , R) to C (K , R)149

x

List of Tables

2.1 Equational Laws for Operations on S ca la rs 9
2.2 Equational Laws for Operations on Scalar F ie ld s 12
2.3 Scalar Operation L a w s .. 18

xi

Chapter 1

Introduction

1.1 W hat Are Spatial O bjects?
Spatial objects represent data distributed over a space. They are found almost
everywhere in Computer Science. For example, in

• discrete space we have computer memory, where the space is the set of
all memory addresses, each storing exactly one element of data, and in

• continuous space we have computer graphics, where objects axe repre­
sented in 3D space consisting of data from medical scanning devices.

Clearly one can see the diversity of data in space and think of examples
of spatial objects defined over different types of space comprised of data from
a variety of sources. In each application the user must choose the space and
data from which the objects will be made. In order to compute with these
objects the user must, in addition, choose some operations to manipulate them.
The choices of data and operations on spatial objects are infinite and depend
primarily on the application area. For instance, in the context of computer
graphics, one may consider operations of scaling, rotation or translation on 3D
graphical objects in the RGB graphics model.

The aim of this thesis is to create a general theory of spatial objects and
their operations. We will do this using algebra and topology.

1.2 C onstructive Volume G eom etry
Computer graphics is our primary motivation for the general theory of spatial
objects, and we focus particularly on volume graphics. This area of computer
graphics is concerned with the representation of three dimensional data and
methods in which such 3D data is rendered on a two dimensional medium,
for example, a computer monitor. An excellent overview of the technology

1

1.3 The Completeness Problem 2

and methods currently used in volume graphics is [14] while [16] gives some
practical methods of rendering volumetric data.

In volume graphics, data may be represented in many ways. We may have
discrete volume data gathered from a medical scanning device or our data may
be the values of a continuous function. Thus when defining graphical objects in
this application area, we can expect their data to be from a variety of sources.
Now we would like to perform operations such as rotations or translations, on
these objects regardless of the type of data tha t forms our objects.

To achieve a uniform way of manipulating objects, we use Constructive
Volume Geometry (CVG) and this serves as the motivation for our work and
the main application for our general theory. CVG was developed by Chen and
Tucker in [19] as an algebraic framework for the specification, representation
and manipulation of volume data types. It gives an abstract representation of
spatial objects and of the operations performed on these objects. Thus, users
of CVG perform operations on objects using high-level CVG operations. This
allows objects containing data from various sources, discrete or continuous
data, to be handled in a uniform manner. Such representations of data are
important, as they have a considerable effect on the computational properties
of CVG [61], [63].

One key idea is tha t objects are represented in the CVG framework using
finite syntax, called CVG terms, representing complex spatial objects built
from operations on simpler objects. This finiteness is essential in the compu­
tation of spatial objects in CVG. One could envision a program which, given
a complex syntactic term representing some sequence of operations on CVG
objects, works out the resulting object and renders it so that it can be viewed
by the user as a graphical scene on the display. We could also consider a pro­
gram to transform CVG terms into some normal form which would reduce the
computation time needed for rendering.

We pose the new question:

Can CVG terms describe all possible CVG spatial objects?

The choice of operations available to the user of CVG are limitless, but
generally are based on the needs of a particular application. We would like
some operations and some basic CVG spatial objects tha t we could use to
generate all the CVG spatial objects we are interested in. In this way, we would
have a sequence of CVG spatial objects and the operations performed on them
to create more and more complex objects. This leads to the formulation of The
Completeness Problem, for CVG and for spatial objects in general.

1.3 The C om pleteness Problem
At the heart of the theory of abstract data types lies data and operations on
data. A natural question to consider is the following.

1.4 Aim o f Thesis 3

Are there some operations that are, in a sense, necessary or adequate to
construct complicated objects from simple ones?

In other words, we would like some operations and some basic spatial objects
that we can use to generate all the spatial objects we are interested in. In
this way, we would have a composition of spatial objects and the operations
performed on them to create more and more complex objects.

The primary obstacle to this approach is that this set of generated se­
quences of operations on spatial objects, which we call terms (Section 3.3), is
countable. The set of spatial objects is commonly uncountable, therefore we
cannot represent every spatial object as a term. We can however produce a set
to generate all spatial objects possibly by approximation.

Theories of approximation require topological notions, and for this reason
we introduce topologies on the space and data. Our interest therefore is nar­
rowed to the set of continuous spatial objects, where such objects and their
approximation behaves and is well understood.

We formulate the Completeness Problem as follows: For a set C of contin­
uous spatial objects can we find

(i) a finite collection E of operations on spatial objects,

(ii) a subset B C C of spatial objects (called basic spatial objects),

such tha t when we apply the operations of E to the generators in B repeat­
edly the set (B)zsw generated is adequate to approximates all spatial objects.
Specifically, factors we also need to consider

(iii) a topology on C to formulate the method of approximation.

In this case, the requirement of adequacy based on approximation is simply

{B)zsw is dense in C.

1.4 Aim of Thesis
The primary aim of this thesis is to study a data type of spatial objects and
provide a high-level framework of objects and operations on objects tha t will
be useful in developing a theory general enough to handle spatial objects in a
uniform manner, without having to consider the data it is made from. To meet
this aim, we:

1 . Give an account of the algebraic properties of spatial objects, including
their laws for specification,

2. Unify different examples from graphics, hardware, etc.,

3. Unify discrete and continuous spatial data types,

4. Give an account of approximation properties of spatial objects.

1.5 Thesis Outline 4

1.5 Thesis Outline
In Chapter 2 we introduce Constructive Volume Geometry where we give an
informal specification of the data (scalars) used to define our CVG objects. In
CVG, data is represented by a set S of scalars and we show how operations on
total maps (f) : E 3 —> S called scalar fields can be defined. We develop some
algebraic properties and show equational laws on our data lift to equational
laws on scalar fields. We show how operations on objects are defined using
operations on the scalar fields.

Chen and Tucker have asserted in [19] that Constructive Volume Geometry
is a general algebraic framework which encapsulates all the representations of
computer graphics in use today. Examples of CVG classes of spatial objects
are given: Opacity-Only and the Four-Colour Channel Model, chosen for their
widespread use in practical applications of computer graphics. We show in­
formally how Constructive Solid Geometry as described in the early papers of
Requicha [49], [50] is embedded in CVG. The actual mathematical proof is
deferred to Chapter 4 Section 4.5. CVG acts as a running application of the
general theory throughout the thesis.

Our aim is to give a general answer to the completeness problem, which
will require theory from several mathematical fields. We give some preliminary
definitions in Chapter 3, and set the notation used throughout the thesis. The
reader is expected to have some background in both the theory of abstract
data types and topology and a knowledge of computer graphics is also helpful,
but not essential.

Universal algebra will play an important role in our work as spatial ob­
jects are modelled by algebras of total functions. The basic definitions and
notation for many-sorted algebras, terms and term evaluation are given. Some
algebraic constructions (products, inverse limits), and structures (commutative
rings, vector spaces) are used in the thesis, thus basic definitions and results
are included in this chapter. The need for topological results is apparent by our
remarks on the completeness problem: we are interested in approximating con­
tinuous spatial objects, as such objects are well behaved. In a language more
suited to topology, the term “spatial object” is often replaced with “function” .
That is, we are dealing with the class of all continuous functions. A stable
theory exists for this important class of functions. It is treated in advanced
topological textbooks such as [26], [27], [36] to name a few. In the preliminar­
ies we give some of the basic terminology and definitions from topology and
metric spaces. It is also useful to define here various types of orderings such
as preorders, partial orders and directed sets. Such notions are needed for the
approximation of spatial objects.

Chapter 4 is a study of the algebraic properties of spatial objects. Starting
with a set of data and operations on the data, we give a general method of
defining operations on spatial objects that perform the operation on the data

1.5 Thesis Outline 5

at each point in space. This method is called pointwise lifting or pointwise
extension and is also used in [41]. Such a construction has many nice proper­
ties. Equational Validity is preserved (Theorem 4.3.1) which we use to show
equational axiomatic specifications of the data also hold when pointwise lifted
to spatial objects (Corollary 4.3.1).

In the general theory of spatial data types we study data distributed through­
out an arbitrary topological space. It is useful to make a distinction between
discrete space and continuous space. Their application areas are different and
we would like to study both in some detail. Thus we have treated each type of
space in a separate chapter.

Chapter 5 gives an account of how one may build a topological space over
the set of spatial objects F (X , A) where X is a countable set, for example
the integers, and the data set A is some topological algebra. We look at
finite approximations which restricts a spatial object to a finite subset X f in
of X and consider how </> : Xf in —> A can approximate <j> : X —> A. Sets of
finite restrictions of spatial objects form the basic open sets of the topology
on F(X, A) . We give many examples of data distributed over discrete space.
A larger case study is done with the Spatially Extended Register Machine or
SERM. The SERM is a computational model which we use to run programs
over data in an algebra A. We analyse both the operational semantics and the
input/output of the model and give some results such as the Local Computation
Theorem 5.4.1. We show how the algebraic results of Chapter 4 can give us
an easy way of defining machines which compute over the spatial objects in
F(X, A) . We interpret this construction as a method of modelling parallel
computing. That is, a SERM executing a program on the data at each point
in the space X simultaneously.

In Chapter 6 , the data is a topological algebra A distributed over an ar­
bitrary topological space X . We study the class C (X , A) of all continuous
total functions mapping points in the space X to the data in A. The topology
we gave for spatial objects in discrete space is actually a special case of the
compact-open topology, and we give its general construction in detail as well
as investigate some useful properties. By generalising finiteness to compact­
ness, we use compact sets as a way of approximating a spatial object locally,
and these sets of approximating spatial objects form the basic open sets of the
compact-open topology on C(X,A) . Of particular importance in our work is
when the data A is the real numbers R. Section 6 . 6 studies this case and we
show how the metric space R defines the uniform convergence norm. For such
a norm to be meaningful, approximation is limited to spaces that are compact.
This does limit our applications, as the space used by CVG is R3. We resolve
this issue starting in Section 6 . 8 by defining a topology on the inverse limit
over the family of compact subsets of the topological space X . This topol­
ogy is shown to be equivalent to the compact-open topology over C(X, A) in
Theorem 6.8.1.

1.5 Thesis Outline 6

Chapter 7 gives a detailed account of the expressiveness and completeness
problem, and the role of approximation. We want to find operations such that
when applied to some basic spatial objects, we can generate all spatial objects
we are interested in, possibly by approximation. The result which we use is the
Stone-Weierstrass Theorem 7.3.2. This is a well known topological result which
gives conditions that the operations and basic spatial objects must satisfy to
produce a dense subset of C(X ,R). We begin in Section 7.3.6 by proving the
theorem for the case of spatial objects C(K, R) mapping from a compact space
K to the real numbers. The theorem is extended to handle spatial objects
whose data is the unit interval [0,1] and the n-tuple Rn. Such a result is
useful when applied to CVG spatial objects and we look at such an application
in Section 7.5 for the Four-Colour Channel model. Using the inverse limit
construction we prove Theorem 7.7.1 which approximates spatial objects over
a non-compact space (R3 for example). Thus give a spatial object in C(X ,R),
this theorem finds a suitable spatial object that approximates it locally on a
basic open set of the compact-open topology.

Lastly, Chapter 8 reviews the results we have given in this work. Sugges­
tions for further research are give and we discuss some possible extensions of
the work. We discuss how a theory of computation may be developed in the
future for programming with spatial data types.

Chapter 2

Volume Graphics and
Constructive Volume Geom etry

2.1 Introduction
Computer graphics have been used extensively in practical computing for well
over 30 years. The users of computer graphics have developed many methods
to model graphics objects. These representations, or schemes, are varied and
depend on the needs of the user and the type of objects tha t are being repre­
sented. Each scheme has a collection of operations that are used to manipulate
the objects represented. For instance, 3D volumes have originally been stored
as a simple three dimensional arrays. Such a representation is low level. As
applications such as medical scanning devices develop, a more general and
abstract understanding develops.

Constructive Volume Geometry (CVG) is an algebraic framework that works
towards a unification of such representations. Using the theory of abstract data
types [43] and [55], CVG was proposed by Chen and Tucker and first published
in [19] for the high-level specification, manipulation and rendering of spatial
objects.

The goal of CVG is to develop a flexible framework tha t is independent
of any particular concrete representation. This framework is based on scalar
fields: mappings of the form

<fi : E 3 S

from Euclidean space E 3 to scalar data in a set 5, such as the unit interval
[0,1]. The user may choose which data is used in the objects that are being
modelled, as well as the operations that will be performed on these objects.

7

2.2 Scalars and Scalar Fields 8

2.2 Scalars and Scalar Fields
Graphics objects in any scheme rely on some type of data which describes the
object. This data could be of any type, largely dependent on the particular
application area. For example the Constructive Solid Geometry scheme [49],
[50] represents solid objects and surfaces in three dimensional space but offers
no description of the “internal” contents of an object. The data used here is
limited to only the set {0 , 1 } but is enough to describe the shape of the object.

In this section we describe the mathematical idea of scalar fields, which will
give us a method of describing the data at all points of an object, particularly
of its internal composition.

2.2.1 Operations on Scalars
We begin by mathematically describing the data itself, which are commonly
referred to as scalars.

The scalars S will be the real numbers or a subset of the real numbers, such
as the unit interval [0,1]. Usually, there will be some operations on the scalars
whose input are n > 1 values of S and m > 0 real numbers and output is a
value in S. A typical scalar operation / is of the form

/ : S n x Rm -> S.

Let S = [0,1] denote a set of scalars. There can be many such operations
and the user can pick whichever ones are preferred, based on the needs of the
application. For instance, we can define some useful operations such as normal
arithmetic operations one would expect on numbers, as well as min and max:

m ax(si,s2) = m a x im u m ^s i, S2)
m in(si,s2) = m inim um ^{s\, s2)

Si + s2 = minimum® (1 , Si +® s2)
S\ — s2 = m a x im u m ^ 0 , Si — ® s2)

Si • s2 = Si -® s2.

for scalars si, s 2 6 [0 , 1].

2.2.2 Equational Laws on Scalars
These operations satisfy some basic laws, each of which may be an equation,
and so we call them equational laws. We list them as follows:

2.2 Scalars and Scalar Fields 9

Table 2.1: Equational Laws for Operations on Scalars

Commutativity max(si,s2) — max(5 2, si)
min(si,s2) = min(s2,si)
Sl + s2 S2 + Si
Si • s2 = s2 • Si

Associative Laws max(si, max(s2, S3)) = max(max(si, s2), S3)
min(si,min(s2,s 3)) = min(min(si,s2) ,s 3)
Si + (s2 + S3) = (si + S2) + S3
Si • (s2 ' S3) = (si • s2) • S3

Distributive Laws si + max(s2,s 3) = max(si + s2,s i + s 3)
si + min(s2,s 3) = min(si + s2,s i + s 3)
r • max(si, s2) = max(r • s i ,r • s2)
r • m in(si,s2) = min(r • s i ,r • s2)
r ' (si - s2) = (r • si) - (r • s2)

Idempotent Laws max(s, s) = s
min(5 , s) = s

Identity Laws max(s, 0) = s
min(s, 1) = s
s + 0 = s
s — 0 = s
1 • s = s

Dominance Laws max(s, 1) 1
min(s,0) = 0
s + 1 = 1
0 — s = 0
0 • s =1 0

Absorption Laws max(si, min(si, s2)) = s 1
max(si, Si — s2) = si
m in(si,m ax(si,s2)) = Si

2.2 Scalars and Scalar Fields 10

m in(si,si + s2) = Si

Other Useful Laws s — 1 =
si - m ax(s2j sz) =
si - mm(s2, s3) —
5i — (^ 2 + 5 3) =

0

m in(si — s2,si - s3)
m ax(si — 5 2 , 5i — s3)
((•51 - 5 2) - -S3)

2.2.3 Additional Operations
Let S and T be sets of scalars, and si,S 2 € S, t i , t 2 € T. We present some
useful operations on scalars. They shall be used later in the chapter when we
consider particular CVG models (cf. Section 2.4.3).

combiners 1 , t i) , (s2, t2)) = <

(ti • Si + t2 • S2

Si + 52

1̂ + t2

, if Si 7̂ 0 or S2 ^ 0 ;

if si = s2 = 0.

select((si,ti), (s2, t2)) = j J 1 ^ Sl > S2’
I t2 II 5 l < 5 2 -

cap((su t i) , (s2, t2)) =
ti if si > s2;
0 if Si < S2.

2.2.4 Scalar Fields
Scalar fields are the foundation of the CVG framework. They are used to define
CVG spatial objects in E 3 space and provide the basis for a mathematical
description of the data attributes tha t CVG spatial objects are made of.

Scalar fields are defined by total functions of the form

0 : E 3 S

mapping all points in 3D space to a set of scalaxs. Thus set of all scalar fields
is defined as

F (E \ S) = {$ | 0 : E 3 -> S is total}.

At the heart of CVG axe operations which take scalar fields as input and
returns a scalar field as output. Such operations will be derived from the
operations on the set of scalars.

2.2 Scalars and Scalar Fields 11

Using the scalar operations listed in Section 2.2.1, we define some operations
over scalar fields in F (E 3, S):

Max{(f)i,(j>2)(x) = max(<j)i(x),(/)2 {x))
Min((f) i ,0 2)(x) = mm((f)i(x),<f)2 (x))

(0 i + <h)(x) = 0 i (a;) + 0 2 (ar)
(0 i ~ 0 2)(®) = 0 i (x) - (j>2{x)
(0i x 02)(a?) = M X) ’M X)

for scalar fields 0i, 02 € F (E 3,S) and a point x E E 3.
One may interpret these scalar field operations as performing a scalar op­

eration at each point in E 3 simultaneously. This general method of defining
scalax field operations is commonly known as pointwise lifting, discussed in
Chapter 4.

Additionally, we pointwise lift the scalar operations defined in Section 2.2.3
to give the following operations on scalar fields:

Combine^(0 i, n), (02, r 2))(a;) = c o m b in e ^ i(x), n(a;)), (02 (x), r 2 (a:)))
Select((fa, ri), (0 2, r 2))(:c) = seieci((0i(a:), ri(a;)), (0 2 (x), r 2 (a;)))

Cap((0 i,T i),(0 2 ,T2))(x) = cap((0 i(x),ri(a ;)),(0 2 (x),r 2 (x)))

for scalar fields 0i, 02 in FfE13, S') and ri, t 2 in F (E 3, T) and a point £ 6 F 3.

2.2.5 Equational Laws on Scalar Fields
Equational laws that are true on sets of scalar values are also true on scalar
fields.

We consider an example:

E xam ple 2.2.1 The scalar equational law

si - max(s2, s3) = min(si - s2, si - s3)

for scalars in S is automatically true on the set F (E 3, S) of scalar fields:

0i - Max((j)2,0 3) = Afin(0i - 0 2 ,0 i - 03).

The operations satisfy the scalar equational laws given in Table 2 .1 . In fact
we can make the statement:

Equational laws on scalars extend to equational laws on scalar fields.

This statement will be proved in a more general setting in Theorem 4.3.1 and
applied to CVG in Section 4.5 of Chapter 4.

Thus for scalar fields 0 i,0 2 ,0 3,0 E F (E 3,S) and p,pi ,p 2 £ F (F 3 ,R) we
have the following table of equational laws:

2.2 Scalars and Scalar Fields 12

Table 2 .2 : Equational Laws for Operations on Scalar Fields

Commutativity Min(<f> i ,0 2) = M m(0 2,0i)
01 + 02 = 02 + 01
01 ' 02 = 02 ’ 01

Associative Laws Max(fa ,Max(fa , fa)) Max (Max (0i, fa), fa)
M in(fa , M in(fa , fa)) M in (M in (fa ,fa) ,fa)
(01 + (02 + fa)) = ((01 + fa) + 03)

Distributive Laws 0i + M ax(fa, fa) — M ax (fa + 02, 01 + 03)
0! + M in(fa , fa) = M in(fa + 02, 0i + 03)
p - Max(fa, fa) Max(p - fa, P' fa)
p- M in(fa , fa) — Min(p • 0i, p • 02)
P ’ (fa - fa) = (P: 0 i) - (P ’02)

Idempotent Laws M ax(0,0) = Min((j>, 0)
0

Identity Laws M ax(0,0) 0
Min((f), 1) = 0
0 + 0 = 0
0 - 0 = 0
1 -0 = 0

Dominance Laws M ax(0,1) — 1
M m (0,0) — 0
0 + 1 = 1
0 - 0 — 0
0 -0 = 0

Absorption Laws Max(fa , Min(fa , fa)) = 01
Max(fa, 0i - fa) = 01
M in (fa , Max(fa, fa)) 01
Min((j) i,0 i + 02) = 01

2.3 Spatial Objects and Their Operations 13

Other Useful Laws 0 — 1 0

Min(<f)i - 0 2 , 0 i - 03)
Max{(f>i - 0 2 , 0 1 - 03)
(01 — 02) — 03
(Pi • 0) + (P2 • 0)

01 - Max(<f)2 , 03)
01 - Mm(02, 03)
01 ~ (02 + 03)
(Pi + P2) • 0

2.3 Spatial O bjects and Their O perations
We now have some mathematical models of the data and operations on the data
for which our CVG spatial objects are comprised of. With these definitions and
examples in place we are now in a position to define a CVG spatial object from

D efin ition 2.3.1 A CVG spatial object is a tuple o = (O, A \ , . . . , Ak) of scalar
fields defined in E 3, where O : E 3 —> [0,1] is an opacity field, with

as k other possible attributes fields.

Prom the definition, we note that all CVG spatial objects have an opacity
field. This field specifies the visibility of the object at each point in E 3. Such
data is used by rendering algorithms to display the visible geometry of an
object on a user’s screen.

Given an opacity field O : E 3 —► [0,1], a point x in E 3 is said to be opaque
if O(x) = 1 . If O(x) = 0 then the point is transparent. When 0(x) is any
other value then the point is semi-transparent. Consider the situation when
the geometry we are describing is that of an amorphous phenomenon [31],
for example, fog. Not every point in such an object is opaque, or completely
transparent. We shall denote a completely transparent spatial object by the
symbol □ and a opaque spatial object by the symbol ■.

Spatial objects will also contain k attributes

which are used to define properties such as colour, reflection or any other data
useful to the rendering process.

We may also have non-visual data in the attributes such as magnetic fields
or information about the presence of some type of chemicals at a certain point
in space. Different applications need different sets of attributes for the spatial
objects they specify and CVG allows the user to define attributes tha t describe
whatever data is needed by the particular application they are working in.

[19].

A ttri : E 3 —► A \ , . . . , Attrk : E 3 —> Ak

A \ , . . . , Ak

2.3 Spatial Objects and Their Operations 14

CVG uses the theory of abstract data types [43] for naming scalar fields
which provides a way to work with all the spatial objects tha t have the same
attributes.

A spatial object declaration E is defined in [19] (p.284) as a collection of
names for spaces, attributes and scalar fields. Often times it is useful to display
this information:

O b jec t D ecla ra tion E

Space sp

A ttr ib u te s Opacity, A i , . . . , A k

Fields 0 : sp —> Opacity
A ttr\ : sp —> A \ , . . . , A ttrk : sp —► A k

We denote the family of all spatial objects which share the same space, at­
tributes and fields specified in the declaration E as

0 (E) . 1

We define a CVG class to be an algebraic structure A over the set of spatial
objects 0 (E) of the declaration E and operations 4>m which operate on
these spatial objects. We display a CVG class as

CV G Class A

S patia l O b jec ts 0 (2)

O pera tio n s $ 1 : 0 (E) " 1 -> 0 (E) , . . . , : 0(E)"™ -► 0 (E)

Given some objects in 0 (E) we can apply some of the operations to con­
struct more and more complex scenes of spatial objects in our CVG class.
This sequence of operation applications on spatial objects are represented by
CVG terms. We define the set of CVG terms inductively by the following rules

(i) the spatial objects o i , . . . in the set 0 (E) axe CVG terms,

1In fact, 0 (E) is the class A lg(E). We introduce algebraic concepts in the next chapter.

2.3 Spatial Objects and Their Operations 15

(ii) tB l I t r i m) are terms for operations <f>i,. . . , <Fm
performed on the CVG terms ttj where 1 < i < n and 1 < j < m, and

(iii) nothing else is a CVG term.

CVG terms represent compositions of operations on spatial objects and can
be expressed using trees, where non-terminal nodes represent CVG operators
and terminal nodes represent a spatial object. In this sense, we have a finite
representation of a rather complicated spatial object. For example, the term

t = oi[u](o4E]05)[y]02[y]03E]((o9[y]oioE]oii)E]06E]07E]o8)

represents the CVG scene displayed in Figure 2.1, where Oi , . . . , On are spatial
objects.

02 03

07 08

o9 r

✓
— olO"

•II*
noil

Figure 2.1: Tree Representation of CVG Term t

2.3.1 O perations on Spatial O bjects

Operations on the set of spatial objects in O(E) can be defined from the oper­
ations on scalar fields, which in turn are defined from the scalars themselves.
Let Go, Gl5. . . , Gfc be scalar field operations of the form

Gi : (G x Ai x . . . x Ak) x (G x A\ x . . . x Ak) —>► Ai

which takes two (k + l)-tuples of attributes and returns an attribute.

2.3 Spatial Objects and Their Operations 16

General binary operations $: 0(E) x O(E) —> 0(E) for spatial objects
O! = (Oi, j4i|1} . . . , Ai#) and o2 = (0 2, A2,i , .. •, A2ik) are defined as

* (o 1,o2) = (G0iG1, . . . t Gk)

where G0, Gl t . . . , Gk are abbreviations of

G0(0 1, Ai}i , . . . , A \ tk, 0 2, A 2yi , . . . , A 2k)
G i(0 1} , Aifk, 0 2, y42ji, . . . , A2tk)

Gk(Ou A \ ti , . . . , 0 2, A2ii, . . . , 4̂2,fc)

respectively.

2.3.2 D ata R epresen tation in CV G

The data in the Constructive Volume Geometry framework is organized into
two parts: the Object level, and the Field level.

The object level is represented by a CVG tree which corresponds to a CVG
term, where the root of such a tree represents the final composed spatial object,
an example of which is given in Figure 2.2. The field level specifies the scalar
fields. These may be defined mathematically as a function or specify only a
single constant value or be a very complex volumetric data set taken from a
medical scanning device. Clearly this data is varied, and one of the features of

CVG: Data Representation

composite volume object

0 B(o„Oa>

convex
volume

object
• -

1

c<
I v<

1 ---------------------

EMU
1

Figure 2.2: Composition of objects with data from a variety of sources

2.4 Classes o f CVG Spatial Objects 17

CVG is that spatial objects are separated from the data they are comprised of.
In this next section we will give examples of such operations when defining

some particularly useful examples of CVG models: the Opacity-Only model
and the closely related Boolean-Only model, and the 4-Colour Channel model.

2.4 Classes o f CVG Spatial O bjects
We have developed a general framework in which the user can select some data
from which to form spatial objects, and define operations on these objects. [19]
In this section, we highlight this usage in practical terms by showing how some
commonly used schemes can be specified by the CVG framework.

2.4.1 Opacity-Only Model
The simplest scheme we can consider is that where spatial objects have only
one attribute: opacity. We declare these types of spatial objects as follows:

Object Declaration Elcc

Space E 3

A ttributes [0 , 1]

Fields 0 : E 3 — [0,1]

Thus the Opacity-Only declaration of spatial objects is

0(Sicc) = {o | o : £ 3 —> [0 , 1]}.

We define some useful operations on the spatial objects in 0 (E icc). We
collect these operations and their definitions in the following CVG class:

2.4 Classes o f CVG Spatial Objects 18

CVG Class Alec

Spatial O bjects 0 (Eicc)

Operations 0 : 0 (E icc) X 0 (E icc) -> 0 (E i«)
0 : 0 (E icc) x b (E icc) -> 0 (Elee)
E l: 0 (E icc) x 0 (E icc) —*■ O(Eicc)

Definitions 0 (0 1 , 0 2) = M a x (0 i ,0 2)
0 (o i,o 2) = M in (0 i ,0 2)
B (°ij 0 2) = Oi — 0 2

We note that the spatial objects in the opacity-only class of CVG contain
one attribute: opacity. Thus spatial objects are simply Oi = 0 \, where 0 \ :
E 3 —» [0 , 1] is a scalar field.

We can extend the equational laws of scalar fields tha t the spatial objects
are composed of to the actual spatial objects in 0 (E icc). Continuing with
Example 2 .2 . 1 we have

E xam ple 2.4.1 The equation

fa - Max((j>2, fa) = Min{(j)i - fa, fa - fa)

on the scalar fields fa, fa, fa : E z —> [0,1] lifts to the equational law

B (o i , 0 (0 2 ,0 3)) = 0 (0 (0 1 , 0 2) , Q (o i , o3))

on spatial objects 0 1 , 0 2 , 0 3 in 0 (£ icc).

We list additional equational laws for Opacity-Only spatial objects in Table
2.3:

Table 2.3: Scalar Operation Laws

Equational Laws for ^4icc

Commutativity 0 (0 1 , 0 2) = 0 (0 2 , 0 1)

Associative Laws [y](oi,QjD(o2 ,o 3)) = 0 (0 (0 1 , 0 2), o3)

2.4 Classes o f CVG Spatial Objects 19

0 (0 1 ,0 (0 2 , 0 3)) = 0 (0 (0 1 , o2) ,o 3)

Idempotent Laws 0 (o, o) = 0

0 (o, o) = 0

Identity Laws 0 (o, □) = 0

0 (o, ■) = 0

B(o, □) = o

Dominance Laws 0 (o, ■) = ■
0 (o, □) - □
B (n ,o) = □

Absorption Laws 0 (o1,0 (o1,o 2)) = 0 1

0 (0 1 , 0 (0 1 , 0 2)) = Oi
0 (0 1 , 0 (0 1 , 0 2)) = 0 1

Other Useful Laws B(°> ■) = □
B (o i , 0 (0 2 ,0 3)) = 0 (0 (o i , o 2) , B (o i , o 3))
B (o i ,0 (o2, o 3)) = 0 (B (o i , o 2) , B (o i , o 3))

2.4.2 The Boolean-Only Opacity M odel and CSG
Closely related to the Opacity Model, is Boolean-Only Opacity model. Instead
of using the entire interval [0,1], we only consider the subset B = {0,1} C [0,1]
consisting of two values. This allows us to specify CVG objects that map
points in E 3 to the set B, thereby specifying the surface of a solid object. The
Boolean-Only Opacity type of spatial object are declared as

O b jec t D eclara tion

Space E 3

A ttr ib u te s B

Fields 0 : E 3 —► B

We denote the set of Boolean-Only CVG objects as

2.4 Classes o f CVG Spatial Objects 20

An object o in 0(H B) tha t occupies space in a subset A C E 3 is defined by

, v / 1 \ i x E A
° W = | 0 i f x i A

where a value o(:r) = 1 means that the point x is in the object defined by the
subset A, and a value o(a;) = 0 means the point is outside the object.

We define the operations 0 , [n] and B for Boolean-Only Opacity CVG ob­
jects as follows:

CVG Class A®

Spatial O bjects 0 (Es)

Operations 0 : 0 (E #) x 0 (E #) —> 0 (E #)
[n]: 0 (Y>b) x 0 {T>b) ~^ O(Ejg)
B : 0 (E b) x 0 (E fl) -► O(Efl)

Definitions 0 (0 1 , 0 2) = M ax(O i, O2)
0 (0 1 , 0 2) = M in (0 i ,0 2)
B (°i>°2) = Oi — O2

Constructive Solid G eom etry

Constructive Solid Geometry (CSG) has been used to model solid objects in
computer graphics. Examples of such modeling abound in civil and mechanical
engineering.

Roughly speaking, in CSG an object is specified by a subset of E 3. A
user has several primitive objects that can be combined to construct more
complicated objects by way of operations of union, intersection and difference.
The reader interested in the mathematical details which underly the theory of
Constructive Solid Geometry are directed to some early papers such as [49]
and [50].

To specify objects in CSG we use the set of all subsets of E 3, which we
denote by £P(E3). The CSG operations U, fl and — then have the usual
set-theoretic definitions. We list the operations in the class

2.4 Classes o f CVG Spatial Objects 21

CV G Class A csg

S patia l O b jec ts &>{E3)

O p era tions U : £P(E3) x
n : &>{E3) x
- : 0>(E3) x

&>(E3) -> & (E 3)
0>(E3) -> & (E 3)
&>(E3) -> 3?(E3)

We can make an observation here that the class Aqsg of Constructive Solid
Geometry and the Boolean-Only Opacity Model A \cc have the same algebraic
structure, that is, they are isomorphic. This proof involves defining a mapping
e : E 3) —> F (E 3, B) from the family of all sets of E 3 to the set of boolean­
valued scalar fields. To show that the operations behave in the correct manner,
we would need to verify the following equations for subsets A and B of E 3.

e(A U B) = e(A)[u]e(i?)
e (AD B) = e(A)\n}e(B)
e (A - B) = e(A)He(B).

This result is proved in Theorem 4.5.1 of Chapter 4, after more sophisticated
mathematical tools have been introduced.

2.4.3 The 4-Colour Channel Model
A particularly useful example of a CVG model is the 4-colour channel model,
which consists of data attributes for opacity, red, green and blue. This model
used in [48] and later modified by [37] for use in volume visualisation. We
declare the 4-colour channel spatial objects as follows:

O b jec t D ecla ra tion T4cc

Space E 3

A ttr ib u te s [0 , 1] ,R

Fields 0 E 3 - >[o,i]
R E 3 -
G E 3 —>R
B E 3 - >R

2.4 Classes o f CVG Spatial Objects 22

We define the set 0 (E 4cc) of all four-colour channel model spatial objects as

0 (E 4cc) = {o | o : E 3 —» [0,1] x R x R x R}.

Furthermore, we define some operations on these objects in the class

CVG Class -̂ 4 cc

Spatia l O bjects o (E 4cc)

O p era tions M : 0 (Z 4cc) x 0 (Z 4cc) -- o (E 4cc)
[n]: 0 (E 4cc) x 0 (S 4cc) -- o (E 4cc)
B : 0 (Z 4cc) x 0 (Z 4cc) --*■ 0 (Z 4cc)

CVG: Operation (I)

■■■■
Or(On R-u Gj, Bj)

o .=(02, Rj, (i2, B2)

m

Figure 2.3: The union of two E4cc spatial objects Oi and o 2

Let Oi and o2 with scalar fields 0\, R\ ,G\, B\ and 0 2,/?2,G 2,B 2 respec­
tively. The operations for CVG spatial objects in the 4-colour channel model
are displayed in Figures 2.3 and 2.4 and are defined as follows:

2.5 Notes and Sources 23

CVG: Operation (II)

EKo,, 02)

EK®,, 0 2)

0 4

%
0

EK°i> °2)

B (o 2, o ,)

Figure 2.4: 4CC Operations with two E4cc spatial objects 0 1 and 0 2

0(01,02) = (Max(01,02) ,5e/ed((0i,i?i), (02,i?2)),
Select^OUGX), (02, G2)), Se/ec*((Oj, B x), (0 2, £ 2)))

0 (01, 02) = (MinfOj, 0 2) , 5e led ((0 lt (0 2, fl2)) ,
Seled((Oi,Gi), (02,G2)) , Select ((Ou B x), (0 2, B2)))

E)(°i 102) = (Oi — O2, Ri, Gi, B\)

2.5 N otes and Sources
This chapter is based on the paper [19] and Technical Report [18], both by
Chen and Tucker.

A basic rendering algorithm developed for the CVG framework can be found
in the Chen and Tucker paper [19]. Given a CVG term we aim to render
each component of the term (or equivalently, each subtree in the CVG tree)
as independently as possible using structural induction. However, we do not
study the problem in this thesis, but leave it as an open problem for future
research.

A brief overview of Constructive Volume Geometry and its relation to spa­
tial data types was presented at the British Colloquium for Theoretical Com­

2.5 Notes and Sources 24

puter Science (BCTCS) in 2006, and parts of the chapter are based on that
presentation [35].

Another PhD which applies constructive volume geometry is [1]. In that
work, algebraic properties of abstract operations on volume objects are stud­
ied so that one can design them to be more consistent and useful, and discover
general laws for their behavior. An algebraic framework with operations spe­
cially for volume objects with complex physical properties is designed, and a
physically-based rendering algorithm based on the Kubelka-Munk Theory of
diffuse reflectance is developed.

Constructive Volume Geometry is being developed largely through practical
work in graphics. The CVG framework has been implemented in the vlib API
library by Andrew S. Winter and Min Chen [2 1].

Chapter 3

Algebraic and Topological
Preliminaries

3.1 Introduction
The scientific study of spatial data types will require concepts and results from
many areas of mathematics.

In these preliminaries we will list some basic definitions, lemmas and the­
orems from areas of universal algebra, topology and analysis with more ad­
vanced material introduced when needed. We establish notation that will be
used throughout this thesis.

3.2 M any-Sorted Algebras
We model abstract data types with many-sorted algebras. Tucker and Stephen­
son give a complete account of their role in the study of data types in their
textbook [55]. They are also listed in several other papers [43], [59] and [62] to
name a few. We give only the basic definitions needed in our study, beginning
with many-sorted signatures and settle on the notation of [59].

Definition 3.2.1 (M any-Sorted Signatures)
A signature E (for a many-sorted algebra) is a pair consisting of

1 . a finite set S of sorts, and

2. a finite set FunciYf) of (primitive or basic) function symbols, each symbol
f having a type S\ x • • • x sn —> s where n > 0 is the arity of f and
Si, . . . , sn € S are the domain sorts and s G S i» the range sort; in such
a case we write

f : si x • • • x sn —> s.

The case n = 0 corresponds to constant symbols; we then write f > s.

25

3.2 Many-Sorted Algebras 26

We will sometimes display the signature E as

Signature E

Sorts . . . , s , . . .

Constants

Operations . . . , / : si x ••• x s„ -> s , . . .

D efinition 3.2.2 (P ro d u c t T ypes O ver E) A product type over E, or E-
product type is a symbol of the form s\ x • • • x sn (n > 0), where s i , . . . , s n are
sorts of E called its component sorts. We define ProdType(E) to be the set of
E-product types.

For a E-product type u = si x • • • x sn, we define A u = A S1 x • • • x A 3n.
Thus x is an element of the product A u if, and only if, x = (ici,. . . ,x n), where
X{ e A Si for 1 < i < n. Thus each E-function symbol / : u —*■ s has an
interpretation in the E-algebra A as / a ■ A u —> A s. If u is empty, denoted by
the symbol A, then / > s is a constant symbol and }a is an element of A s.

For a E-product type u and E-sort s, let E“ denote the set of all E-function
symbols of type u —> s. The set of all constants of type s is denoted E*.

D efinition 3.2.3 (M any-S orted A lgebras) A E-algebra A has, for each
sort s € E; a non-empty set A 3 called the carrier of sort s, and for each
'E-function symbol f : si x • • • x sn —► s, a function fA : A 3l x • • • x A 3n —> A s.

We can display the E-algebra A as follows

A lgebra A

C arrie rs . . . , A S, . . .

C onstan ts . . . , ca A S1. . .

O perations . . . , / a : A ai x • • • x ASn A a, . . .

3.2 Many-Sorted Algebras 27

3.2.1 The Import Construct
An additional construction commonly used in the definition of signatures and
algebras is the import construct. This construction allows common data types
with their data and operations, to be reused in multiple data types. It is useful
when we wish to describe precisely the addition of new sets and operations to
a signature or algebra. We give an example where a signature S is imported
by another signature S'. The two signatures are displayed as follows:

S ignatu re S

S orts s

C o n stan ts c :—► s

O pera tions f : si x • • • x sn —► s

S ignatu re S '

Im p o rt S

Sorts S'

C o n stan ts d s'

O p era tions / ' : x

From [55] (p. 121), an intuitive idea of the import notation is given by:

• substituting all the components of the signature S ' named in Im p o rt
into the Sorts, C o n stan ts and O p era tio n s declared after Im p o rt in
S; and

• allowing any sort to be included in the type of any new operation.

The import construct does not add anymore expressive power to many-
sorted signatures, we use it for convenience. We can flatten S ' by removing
the Im p o rt declaration and making the necessary substitutions:

3.3 Many-Sorted Terms 28

S ignatu re E'

Sorts S U S '

C onstan ts c s, d > s'

O perations f : si x • • • x sn -> s
f : si x • • • x s'n -+ s'

Similar remarks hold for the import construct of algebras.

3.2.2 Subalgebras
Now for a signature E and an interpreting E-algebra A, we consider subsets of
A that are closed under the E-operations. We call such subsets E-subalgebras,
are they are defined as follows:

D efinition 3.2.4 (Subalgebras) [43](p.233) Let A and B be S-sorted E-
algebras. Then B is said to be a E -subalgebra of A if, and only if, for each sort
s 6 S, B s C A a; for each constant symbol c > s

Cfl = Ca i

and function symbol f : u —> s where u = Si x • • • x s n and any (&i,. . . , bn) € B u,

/ s (6 i , . . - A) = f A (b i , . . . , b n) .

We use the notation B < A to mean B is a subalgebra of A.
t

D efinition 3.2.5 (G en era ted Subalgebras) Let A be any H-algebra and
S C A be any subset of A. The subset (S)a of A generated by S is the set

(s)a = p H 5 1 S C B and B < A}.

We often refer to the elements of S' as the generators of the E-subalgebra
(S)a -

3.3 M any-Sorted Terms
By applying the operations of the signature E on variables contained in a set
Y, we are constructing expressions or terms over E. In this section we define
rules on how we may construct many-sorted terms for a general signature E,
following [55] (p.281).

3.3 Many-Sorted Terms 29

Definition 3.3.1 (M any-Sorted Terms) Let Y = (Ya \ s € S) be a family
of non-empty sets of variables indexed by the sort set S of E. We define the
set T {E , Y) S of all terms of sort s by induction from the following rules

(i) each constant symbol c s is a term of sort s,

(ii) each variable symbol y € is a term of sort s ,

(Hi) for each function symbol f : s\ x ■ ■ ■ x sn —> s and any terms ti o f sort
S i , . . . , t n o f sort sn the expression f (t \ , . . . , t n) is a term of sort s, and

(iv) nothing else is a term.

We denote
T (E, Y) = (T (E , Y) 3 \ s e S)

to be the family of all 'E-terms indexed by the sort set S.

Let E be an S'-sorted signature. Roughly speaking, term evaluation over a
E-algebra A is a mapping from the set of terms T(E , Y) to A that works out
the value of a term in A. We define the collection of assignment functions that
map variables in Y to data in A 3 as V(Y, A)s = {ua : Ya —> A a}, for a sort
s e S and then

V(Y tA) = (V(Y,A)a \ s e S) .

We use these assignment functions to define a function mapping terms in
T (£, Y) to data elements in the algebra A. Such a mapping is a term evaluation
function. This definition of term evaluation for a £-algebra A is a modification
of the definition found in [43] and [55]:

Definition 3.3.2 (M any-Sorted Term Evaluation) Given an S-sorted fam ­
ily v = (Vs : Ys A s \ s € S) of assignments of elements va(y) 6 A a to
variables y E Y 3, we define the family

l - K = { [-] ” = T (£ ,Y) . x V(Y , A) , - >1. | 4 e S}

of term evaluation maps derived from v by induction on the structure of terms:
for every sort 5 , Si , . . . , sn G S, constant c > 5 € £, variable y € Ys, operation
f : si x • • • x sn —► s in E and terms t\ G T(£ y) ai, . . . , t n € T (E y)an; we have

bfs = CAS
f a i l s = v (V i)

l f { t l , • • • ,*n)]J = W M , , • • • , M J -

3.4 Commutative Rings 30

3.4 C om m utative R ings
A commutative ring is an algebraic structure containing a set A, an additive
operation + and multiplicative operation • which satisfy certain laws. We
specify these operations aa follows:

Signature ^ CRing

Sorts CRing

Constants 0 > CRing
1 ► CRing

Operations + : CRing x CRing —> CRing
• : CRing x CRing —» CRing

— : CRing —> CRing

We list the laws, or axioms for a commutative ring. These axioms have been
selected since they represent properties we are accustomed to when calculating,
for example, with the integers.______________________________________

A xiom s TcRing

Associativity of addition (Vx)(Vy)(Vz)[(a; + y) + z = x + (y + z)\

Identity of addition (Va:) [x + 0 = x]

Inverse of addition (Vs) [a: + (—x) = 0]

Commutivity of addition (Vx)(Vy)lx + y = y + x\

Assoc, of multiplication (Vx)(Vy)(Vz)[(a; • y) • z = x • (y • z)\

Comm of multiplication (]ix){x -y = y - x)

Identity for multiplication (Vx)[a; • 1 = x]

Distributivity (Va;)(Vy)(V«)[:r • (y + z) = x • y + x • z]

Definition 3.4.1 (Com m utative Rings) [39] A Ecmng-algebra A is a ring
if, and only if, it satisfies the axioms ofTcmng, i-e., R e AIg(ZcRing, TcRing)-

3.5 Vector Spaces 31

It is easy to show that the operations of + and • on the real numbers satisfy
these equations (aa the use of 0 and 1 in the axioms imply). Other classical
examples of commutative rings are

• the integers Z,

• the integers mod n where Zn = {0, . . . , n — 1},

• the rational numbers Q,

• the complex numbers C, and

• the ring of polynomials R[x] where R € Alg{Y,Cmng, Tcmng)-

3.5 Vector Spaces
The axioms of a vector space can be found in any book covering algebraic
structures, for example [52].

Signature Scalar

Sorts Scalar

Operations + : Vector x Vector —► Vector
• : Scalar x Vector —> Vector

Signature ^Vector

Im port Scalar

Sorts Vector

Operations + : Vector x Vector - -> Vector
• : Scalar x Vector - Vector

The axioms which the vector space satisfies are listed as follows for u, v, w 6

Vector and a, 6 , c 6 Scalar:

3.6 Ordered Sets 32

A xiom s Ty ector

Associativity of addition (Vu, v, w)(u + v) + w = u + (v + iu)]

Identity of addition (Vu) [u + 0 = u]

Inverse of addition (Vu)[u + (—u) = 0]

Commutativity of addition (Vu, v) [u -I- V = V + u]

Identity (Vu) [1 • u = u]

Associativity (Va, 6)(Vu)[(a • b) • u = a • (6 • u)]

Distribution (Va,6)(Vu,v)[a • (u + v) = a-u-\- a - v\
[{a + b) • v = a • u + b • v\

Definition 3.5.1 (Vector Spaces) A ^vector-algebra V is defined to be a
vector space if, and only if, it satisfies the axioms listed in Tyector• i-e->
V G A lg(T iyector > -^Vector) •

3.6 Ordered Sets
Orderings are binary relations between mathematical objects. The most famil­
iar orderings to us are that of the number systems, such as the binary relation
< for the natural numbers N or > on the real numbers R. The following def­
initions generalise such orderings to situations where we wish to compare, for
example, sets using the inclusion relation C or functions of the real numbers.
The source of these definitions and examples are from [26] and [52].

Definition 3.6.1 (Preordered sets) Let A be a non-empty set. A preorder
relation in A is a binary relation R satisfying the following properties

1. for all x G A: xR x (Refiexivity),

2. x < y and y < z implies x < z (Transitivity).

Definition 3.6.2 (Partially Ordered Sets) Let A be a preordered set. A
partial order relation in A is a binary relation < satisfying the following prop­
erty:

3. x < y and y < x implies x = y (Antisymmetry).

3.7 Algebraic Constructions 33

We usually called partially ordered sets posets. Examples of posets appear
throughout mathematics, such as the binary relation of set inclusion:

E xam ple 3.6.1 [52] Let P be the power set of some universe U. Then for
the binary relation of set inclusion C, we can easily see th a t for any subsets
A, B , C C U the following properties are satisfied:

(i) A C A,

(ii) A C B and B C C implies A C C ,

(iii) A C B and B C A imply A — B.

In addition, we shall need another ordering property for sets:

D efin ition 3.6.3 (D irec ted Set) A directed set D is a preordered set with
the following property

4. for each x ,y 6 D, there exists a z G D such that x < z and y < z.

D efinition 3.6.4 [52](pAA) Let B be a non-empty subset of a partially ordered
set A. An element x G A is called a lower bound of A if x < a for each a 6 A.
An element y of A is said to be an upper bound of A if a < y for every a G A.

A lower bound of A is called a greatest lower bound (g.l.b) or the infimum
(inf) if it is greater than or equal to every lower bound of A. An upper bound
of A is called a least upper bound (l.u.b) or the supremum (sup) if it is less
than, or equal to every upper bound of A. It can be shown ([44]) that both
the g.l.b and l.u.b are unique, if they exist. Using this we define

D efinition 3.6.5 (L attice) [52] A lattice is a partially ordered set L in which
each pair of elements has a greatest lower bound and a least upper bound. For
any x ,y E L we denote the g.l.b and l.u.b of x and y as x A y and x V y , called
the meet and join of x and y respectively.

Lattices are important in this work, and we look at them in greater detail
in Chapter 4 Section 4.4.

3.7 Algebraic C onstructions
When we have a family A = {Ai \ i E /} , of E-algebras, a natural algebraic
structure to define is the product f j A. We give this construction in detail, and
show how the product of E-algebras itself can be made into an E-algebra. We
also give the construction of an important subalgebra of I”[A called the inverse
limit over a family of E-algebras.

3.7 Algebraic Constructions 34

3.7.1 Products of E-Algebras
We use products of E-algebras throughout our work, so we list some definitions
from [26] (p.22 — 24) and [43](p.276 — 277).

D efin ition 3.7.1 [43] Let A = {Ai \ i E I) be an I-indexed family of S-sorted
Y-algebras, for some (possibly empty) indexing set I. The product of A, is the
S-sorted Y,-algebra i with S-indexed family of carrier sets

l [A = {{l [A)3 \ s e S) ,

where each carrier set (JJ A) 3 is the product of the sets (A)a given by

(I I A)a = { / : / —► UieI{Ai)s | f (i) E A i3 for all i E I}.

For each sort s E S and each constant symbol c € E*;

cru W =

For each non-empty E -product type u = s\ x . . . x sn each sort s E S and
each function symbol f € E“ and any (a i , . . . , an) € (I”[A)u,

/[] /4(a l) • • • j ®n) (0 = /i4i(^l(0» • • • j ®n(®))-

The projection of the product f l A to a single coordinate space is a function
7r< : u a —► Ai where 7Tj(a) = ai is an element in the i-th coordinate set Ai.
For a given j E I and Cj C Aj we write the preimage 7rJ l [Cj\ of the projection
function 7Tj as (Cj), where each factor in 1S A except at j , where the
factor is Cj. For finitely many indices i i , . . . , in, and sets C^ C Ai 1 5 . . . , C*n C
A in, we denote tt"1^] n • • • fl ^ [C in] by (Ch , . . . , Cin).

We can define a E-algebra with the product of E-algebras as the carrier
where the operations on f lie / Ai are pointwise lifted.

Algebra E M

Carriers U A

Constants • • • > c t ia (*) = c ^ , . • •

Operations

Definitions • • • > • 5 0,n)(i') ~ f A i(a l (0 5 • • • J a n(i))> • • •

3.7 Algebraic Constructions 35

3.7.2 General Construction of an Inverse System
Let E be a general single sorted signature. The inverse system shall be defined
over a family A = {Ai \ i € 1} of E-algebras where I is the index set.

D efin ition 3.7.2 (Inverse System s) [43](p.204,) An inverse system of E-
algebras consists of:

(i) a directed partially ordered set (7, <); i.e: for each i , j in I there exists a
k such that i < j < k.

(ii) an indexed family A = {Ai | i 6 7} of E -algebras; and

(Hi) an indexed family of E-homomorphisms : Ai —> Aj, for each i > j
such that

for all i > j > k and (j>\ is the identity map for each index i 6 7.

We write this inverse system as <5(̂ 4) = {A, (f>pl}-

The limit of an inverse system S(A) is defined to be the set

limA = (a € A | for all z > j 4>lj(ai) — aj}.

We denote the projection map restricted to the inverse limit as

(f>i : 7Ti | limA : lim^4 —> Ai

which defines a homomorphism from the inverse limit to the coordinate space
Ai. [32](p.ll9)

L em m a 3.7.1 The limit limA of the inverse system S(A) is a E-subalgebra of
the product A.

P r o o f The carrier set limA is a subset of f] ^ by definition. To show limA <
U A we note that for each constant c 6 E^ we have

C|“J 4̂ OAi X Cj42 X • ’ •

as the interpretation in the E-algebra Then for any i > j in 7 and
E-homomorphism 0* : Ai —> Aj we have

$ (CII*M) = <t>){cAi)
= cAj

= cn aU)

3.8 Topology 36

and hence ĉ [a € limA
Now consider any E-operation / 6 E |n and let a i , . . . , an be elements of

lim A We want to show that the product

x f A2 (ai(2) , . . . , an(2)) x •••

is in the carrier set lim A That is, for a E-homomorphism </>*■ : A* —> Aj with
i > j E I the condition

a {p *i » • • • > a n) { ^)) = f n A i f l l i • • • i a n) { j)

is true for any elements a \ , . . . , an of limA. By definition we have

= fAj{a iO ') , . . . , an(j))

= /n • • • j ®n)0 ')

showing that the condition

0 }(/ lM(ai>. . . l an)(t)) = /n>i (ai , - . . , an)(j)

holds, proving the result. ■

We display the E-subalgebra limA as follows

Algebra limA

Carriers limA

Constants . . . , c\\mA, . . .

O p era tio n s . . . , fumA '■ limA x • • • x limA —► lim A , . . .

D efin itions . . . , / Um>i(ai,. . . , an)(i) = f Ai{ai{i), . . . an(i)),

3.8 Topology
This section gives several basic definitions and results from topology, taken
from the standard texts in topology [26] and [36].

3.8 Topology- 37

Definition 3.8.1 (Topological Spaces) Let X be a set. A topology in X is
a family ST of subsets of X that satisfies

1 . Each union of members of SF is also a member of SF,

2. Each finite intersection of members of SF is also a member of SF,

3. 0 and X are members of SF.

Definition 3.8.2 A pair (X, SF) consisting of a set X and a topology SF in X
is called a topological space.

Definition 3.8.3 (Open Sets) The members of the topology SF are called
open sets.

Definition 3.8.4 (Closed Sets) The set A C X is called closed if its com­
plement C xA is an open self.

Definition 3.8.5 [26](p.63) Let (X , SF) be a space. By a neighborhood (writ­
ten nbhd) of a n x E X is meant any open set (that is, member of SF) containing
x.

Definition 3.8.6 (Closure) [26](p.Q9) Let A c X . The set A = {x E X \
\/U(x) : [/ (x) f l i 4 / 0 } of all points in x E X such that each nbhd U(x) of x
contains at least one point of A (which may be x itself), is called the closure
of A.

Some facts about the closure of a set will be useful:

Lemma 3.8.1 A is closed if, and only if, A = A.

Lemma 3.8.2 A = A. That is, A is closed.

Definition 3.8.7 (Basis for a Topology) [26](p.64,) Let (X,SF) be a topo­
logical space. A family 3*8 C SF is called a basis for SF if each member of SF is
the union of members of 38.

Prom [26] (p.64 — 65) we have the result

Theorem 3.8.1 Let 38 C 3F. The following two properties of 38 are equiva­
lent:

1 . 38 is a basis for SF.

2. For each G E SF and each x E G there is a U E 38 with x E U C G.

P r o o f (1) =$> (2). Let x E G\ since G E SF and 38 is a basis, G = Ua 17a ,
where each Ua E 38. Thus there is at least one Ua E 38 with x E Ua C G.
(2) => (1). Let G e ^ ; for each x E G, find Ux E 38 with x E Ux C G; then
G = U{Ux \ x e G } . u

1If A C X , the complement C x A of A with respect to X is X — A [26](p.5)

3.8 Topology 38

3.8.1 Separation Axioms
Recall the separation hierarchy from [36]. We use many of the separation
properties of certain spaces throughout this work. We list them as:

T\ space A topological space is a Ti-space if, and only if, each set which
consists of a single point is closed.

T2 space (H ausdorff) A topological space is a Hausdorff space (T2 -space) if,
and only if, whenever x and y are distinct points of the space there exists
disjoint nbhds x and y.

T3 space (R egular) A Hausdorff space is regular (or T3) if each y G Y and
closed set A not containing y have disjoint nbhds; i.e. if A is closed
and y £ A then there is a nbhd U of y and an open V D A such that
unv = <b.

T4 space (N orm al) A space is normal if, and only if, for each disjoint pair
of closed sets A and B, there are disjoint open sets U and V such that
A C U and B C V. A T^-space is a normal space which is T\.

3.8.2 Compact Spaces and Dense Sets
This section reviews the notions of covers, subcovers and compactness. A
definition of density is given and we list some equivalent statements of this
definition. We start with compact spaces and follow the definitions of [52].

D efin ition 3.8.8 (O pen Covers) Let T = (& , X) be a topological space. A
class {Gi} of open subsets in the family ST is said to be an open cover o fT if
each point in X belongs to at least one Gi. That is,

1J Gt = X.
iei

A subclass of an open cover which is itself an open cover is called a subcover.

D efin ition 3.8.9 (C om pactness) A topological space T = (& , X) is com­
pact if, and only if, each open cover has a finite subcover.

D efinition 3.8.10 (R elative C om pactness) [26](p.237) A subset A of X
is relatively compact whenever its closure A is compact.

We list some useful definitions and terminology for this section from [51].

D efin ition 3.8.11 (Local C om pactness)
A Hausdorff topological space A is said to be local compact if every point of A
has a compact neighborhood.

3.8 Topology 39

Definition 3.8.12 (Refinem ents) [26](p. 161 ̂ Let A = {Ai \ i E 1} and
B = {Bj | j E J} be two coverings of a space Y . The family A is said to refine
(or be a refinement of) B if for each Ai there is some Bj with Ai C Bj.

Definition 3.8.13 (Paracompact Spaces) [26](p. 162)
A Hausdorff space Y is paracompact if each open covering of Y has an open
nbhd-finite refinement.

Definition 3.8.14 (D ensity) Let X be a space. The subset D C X is dense
i n X i fD = X .

The following theorem gives some useful equivalences of this definition:

Theorem 3.8.2 [26](p.72) The following two statements are equivalent:

1 . D is dense in X ,

2. Each non-empty basic open set in X contains an element of D.

In fact, we could add more statements to the list in this theorem, but the
ones we have stated are suitable for our purposes.

3.8.3 The Product Topology
Prom [26] (p.98) we have the standard definition:

D efinition 3.8.15 (Subbasis of Products) Let {Ai \ i E 1} be a family
of topological S -algebras. For each i E I let be the topology for Ai. The
product has a subbase consisting of all sets (Ui) = rr~l \Ui\ where Ui ranges over
all members of ^ and i over all elements of the index set I.

Now, from [26] (p.98) we have that the basic open sets of Y \A i are of the
form n

Uai x • • • x Uan x J \ { A j | j ± oji,. . . , an] = P | t r~][Uai\
i= 1

where n is finite and Uai is open in A ai. We will denote this basic open set of
the product topology by

(^ a i j • • • j ^ a n) •

3.8 Topology 40

3.8.4 Metrics and Distance
Metrics give a general notion of distance between two points in a set X . We
give the following definitions:

D efinition 3.8.16 (M etric Spaces) [52](p.b 1) Let X be a non-empty set.
A metric on X is a function d : X x X —> R which satisfies the following
conditions:

1 . d{x,y) > 0 and d{x,y) = 0 if, and only if, x = y,

2 . d{x,y) = d(y,x),

3. d(x , z) < d(x , y) + d(y, z).

For a metric d : X x X —► R we define the set

B d{a,r) = {a: | d(x,a) < r},

called the d-sphere of radius r and center a. Using such sets, we can define a
basis for a topology:

L em m a 3.8.3 [26] The family {Bd(a, r) | x G X , r > 0} of all d-spheres in X
can serve for a basis for a topology.

In light of the previous lemma, we can make the following definition

D efin ition 3.8.17 [26] Let X be a set and d be a metric in X . The topology
8F having for basis the family

{Bd(a, r) | r 6 X , r > 0 }

of all d-spheres in X , is called the topology in X induced by the metric d.

D efinition 3.8.18 [52](p.54j, Let X be a non-empty set. A norm is a map­
ping || — || : X —► R+ satisfying the following properties:

1 . ||a:|| > 0 and ||a;|| = 0 «£=> x = 0 ,

2. || — x|| = |ja;||;

3. Il̂ c + y\\ < ||z || + \\y\\.

where x, y are points in X .

We observe that a metric can be defined on a space X by way of a norm:

3.8 Topology 41

D efin ition 3.8.19 (N orm ed V ector Spaces) [5](p.18) I fV is a real vector
space (i.e. where the scalars are real numbers), a norm on V is a mapping
|| — || : V —» R+ such that

1. ||v|| > 0 and ||u|| = 0 <£=>■ v = 0,

2. ||v + it;11 < ||u|| + ||n;||;

3. ||Av|| = |A|||v||

3.8.5 Continuity and Uniform Continuity
We give the definition of continuity and some related terminology. Basic nota­
tion and ideas of functions (or mappings) from one set to another are in any
topology text, for example [26] or [36] and therefore are not listed here.

Definition 3.8.20 (Continuity) Let (X , &x) and (Y, 3 y) be spaces. A map
f : X —> Y is called continuous if the inverse image of each set open in Y is
open in X (that is, f ~ l maps Sfy into 3AX).

We usually use this topological notion of continuity, but it is also useful to
consider the analytical definition. We give these definitions in terms of general
metric spaces.

Definition 3.8.21 [5](p.79 — 80) Let f be a mapping from a metric space
(X,d\) to a metric space (Y,d2). f is continuous at the point x in the domain
of f dom(f) if for all e > 0 there exists a 5 = S(e,x) such that

di(x,a) < 6 ==► d2(f{x) , f {a)) < e.

Definition 3.8.22 (Continuous Functions) We say that f is continuous if
it is continuous at every point in its domain.

There are many equivalent notions of continuity, and the one we use depends
on the situation. We list a theorem which is used often in this work which lists
some statements equivalent to the statement of Definition 3.8.22.

Theorem 3.8.3 Let X , Y be topological spaces, and f : X —► Y a map. The
following statements are equivalent:

1. f is continuous.

2. The inverse image of each closed set in Y is closed in X .

3. The inverse image of each member of a subbasis (basis) for Y is open in
X (not necessarily a member of a subbasis, or basis for X).

3.9 Comparison o f Algebras and Topological Spaces 42

4 . For each x G X and each nbhd W(f (x)) in Y , there exists a nbhd V(x)
in X such that f [V(c)] C W[f(x)].

5. f [A] C f[A] for every A C X .

6. / -1 [B] C / -1 [£] for every B C Y .

We give the definition of uniform continuity in terms of metric spaces from
[5] (p.81) and [52] (p.77). Uniform continuity is a stronger condition than con­
tinuity in the sense that for any e we can find a S which works uniformly
throughout the space X . That is, independent of any particular choice of
element x in X .

Definition 3.8.23 (Uniform Continuity) A function f from a metric space
{X,d\) to a metric space (Y, d2) is said to be uniformly continuous if for all
e > 0, there exists a 8 = 5(e) depending on e and independent of x such that

d i (x , y) < 5 = * d2(f (x) J (y)) < e .

for x, y e X .

3.9 Comparison of Algebras and Topological
Spaces

3.9.1 Homomorphisms and Isomorphisms
To compare E-algebras we use E-homomorphisms and E-isomorphisms.' We
take the following definition from [43] (p.257). These definitions are also found
in [33] and [59].

Definition 3.9.1 (E-Hom om orphism s) [43](p-257j
Let A and B be any S-sorted E -algebras. A T,-homomorphism (f) : A —> B is
an S-indexed family of mappings

<j) = (cf)3 : A 3 -> B 3 | s e S),

such that

1. for each sort s G S and each constant symbol c » s

cb = (J>s(ca),

2. for each function symbol f : u —> s of T,-product type u = Si x • • • x sn
and sort s € S,

([s (f U (a l ? • • • j a n)) = / b C ^ s i (^ l) ? • • • j <f a n {P"ri))')

for any element (a\ , . . . , an) € A u.

If each mapping (j)s : A s —> B s is bijective, then 0 is a E-isomorphism.

3.10 Notes and Sources 43

3.9.2 Homeomorphisms
We use the notion of continuity to compare topological spaces in the following
definition.

D efin ition 3.9.2 (H om eom orphism) [26](p.87)
A continuous bijective map f : X —► Y such that f ~ l : Y —> X is also
continuous is called a homeomorphism and denoted by f : X = Y .

Two spaces X , Y are homeomorphic, written X = Y , if there exists a
homeomorphism / between X and Y .

3.9.3 Topological Algebras
D efinition 3.9.3 (Topological S -A lgebras)
A topological Y>-algebra is a E -algebra with topologies on the carriers such that
each of the basic E -operations is continuous.

3.10 N otes and Sources
This chapter gives a summary of terminology and basic results in algebra and
topology. This is by no means a comprehensive list of the terminology and
results used in my thesis. However, all results are either proved in the thesis
or a citation is given.

All topological definitions or results mentioned will be found in any of
standard topology textbooks such as Bourbaki [11], Engelking [27], Kelley [36],
Simmons [52] and Dugundji [26]. Aubin [5] provides most of the definitions
and results for metrics and norms.

The algebraic preliminaries can be found in standard texts [64] or [33].
Meinke and Tucker [43] is an excellent source of information.

The inverse limit plays an important role both algebraically and topologi­
cally in Chapters 6 and 7 thus we have given its construction in detail. Sources
of this information are [26], [27] and [43].

Chapter 4

The Algebra of Spatial Objects

4.1 Introduction
In this chapter we define a general form of spatial objects and some operations
on spatial objects. We consider constructing new spatial objects by the com­
position of operations and the laws the operations may satisfy. We study the
algebraic structures on the data A and on the set of all spatial objects, denoted
F(X, A) , and how they are related.

In Section 4.2 we formally define spatial objects. We define a E-algebra A
containing data and operations on that data which is then used to construct a
E-algebra F (X , A) of spatial objects by the pointwise extension of operations
on A. To further the usefulness of our algebra on F(X, A) , two additional op­
erations on spatial objects are introduced: evaluation and substitution. Given
a spatial object 0 , and a point x in space A , evaluation works out the data
value <j)(x) at x. Substitution replaces the data value (f>(x) at a point x with a
given value a from the data set A.

Section 4.3 uses the set T{E) of syntactic terms formed from the signature
E. We define term evaluation on A and F (X , A) as mapping terms to the
E-algebras A and F (X , A) respectively. We show tha t the data value of terms
axe equivalent when evaluated on either A or F (X , A) (Lemma 4.3.1, Section
4.3). We prove theorems which show

• equational validity on A is equivalent to equational validity in F (X , A),

and its extension

• conditional equational validity on A is equivalent to conditional equa­
tional validity on F(X,A) .

Applying this theorem, we can deduce immediately, e.g., if A is a commu­
tative ring, then so is F(X, A) . Then, the algebraic specification of integral
domains is used to show that valid universal formulae on A are not necessarily
valid on F(X, A).

44

4.2 Algebras o f Spatial Objects 45

Term definable functions are used to define a new E'-algebra A! which
consists entirely of operations defined from the evaluation of E-terms. The
main result shows that for any subset H of the carrier set A the set {H)^>
generated by the repeated application of the E'-operations is a subset of (H) £.

Section 4.4 discusses the topic of lattices, using the real numbers as our
primary example. We define the lattice operations meet and join on a set L
and list eight axioms that they satisfy. We deduce a result which shows that
the pointwise lifted operations of meet and join also satisfy the lattice axioms
on the set F (X , L). We define sublattices, and use the unit interval [0,1] as an
important example of a sublattice of the real numbers.

4.2 Algebras of Spatial O bjects
In this section we define a many-sorted signature E and an interpreting E-
algebra A that we use throughout this chapter. We define spatial objects and
show how the operations on A can be pointwise lifted to form a E-algebra over
the set of all spatial objects.

4.2.1 Spatial Objects
Let E be a general many sorted signature with sorts . . . , s , . . . displayed as
follows.

S ignatu re E

Sorts . . . , s , . . .

C on stan ts . . . , c

O p era tions . . . , / : si x • • • x sn -> 5, . . .

Consider a general E-algebra A which interprets E:

4.2 Algebras of Spatial Objects 46

A lgebra A

Carriers . . . , A a, . . .

Constants . . . , ca > A s, . . .

Operations . . . , /^ : A ai x • • • x A 3n -»• A S}. . .

Using this E-algebra, we define spatial objects as found in [55]:

D efinition 4.2.1 (Spatial O bjects) Let X be a non-empty set representing
a space and A a E -algebra. A spatial object is a total mapping

4>\X -> A,

which assigns data in A to points in X .

Let
F (X ,A) = { c l> : X ^ A }

be the set of all total mappings from the set X to the data in the algebra
A; in this case, the data will be tuples A Sl x • • • x A Sn of the carriers of A.
We will often use the terms “spatial object” and “function” interchangeably
throughout our work.

Exam ples

We give several examples that motivate the general theory chosen to highlight
the wide applicability of spatial objects in Computer Science, particularly in
Constructive Volume Geometry and the theory of machine modelling.

Exam ple 4.2.1 (C onstructive Volume Geom etry)
CVG defines objects in three dimensional space where X = R3. The data is
usually from a E-algebra S which contains a subset of the real numbers as the
carrier, and contains operations on this data:

4.2 Algebras o f Spatial Objects 47

A lgebra S

C arrie rs S = [0,1] C R

Im p o rt R

C o n stan ts 0,1 G R

O p era tio n s max : S x S —» S
min : 5 x S —* S

+ : S x S ^ S
- - . S x S ^ S
• : S x S - > S

D efinitions max(si,S 2) = maximum(si, s2)
min(si, S2) = m in im um (si , s2)
S i + s2 = minimum(1 , Si + r S 2)

Si — s2 = m axim um (0 , S i —r s 2)

Si • s2 = minimum(1 , s i - r s 2)

Then the set of CVG spatial objects mapping points in R 3 to [0,1] is denoted

F(R3,S).

Closely related to the CVG example are spatial objects in discrete space:

E xam ple 4.2.2 (2 D G rids) Consider an example where the space X is the
two dimensional discrete grid of integers Z2, and the data is contained in some
E-algebra A. Then

F(Z2,A)

is the set of spatial objects that assigns the data in A to each (x, y) coordinate
in the space Z2.

E xam ple 4.2.3 (F in ite 2 D G rids) In this example the space X is the two
dimensional discrete grid of finite integers Zn x Zn where Zn = { 0 , l , . . . , n — 1}.

E xam ple 4.2.4 (M achine M odelling) The memory addresses of a machine
can be thought of as a space. We define the space X = Addr to be the set of
all memory location addresses in a machine. Let the data be from a E-algebra
A. Then the spatial object 0 : Addr —► A represents a particular state of the
memory in the machine and the set F(Addr, A) contains all possible memory
states.

Now consider the case when A = Wk, where Wk is the E-algebra defined as

4.2 Algebras o f Spatial Objects 48

Algebra

Carriers

oII£

Im port ffi

Constants 0 , 1 : -

Operations A,V: Wk x W * -
- ' • ■ W k ^ W k
+1 : W k - > W k

Definitions f t , . . . ,6*)A(&'1, . . . >6i) = (61 A6i , . . . M A b fk)
(61, . . . , 6 ,)V(6'1, . . . ,6'fc) = (61 V6'1, . . . , 6 1V6it)
-1(61,... ,6fc) = (-ifei,. . . , —'fejt)
(6i, . . . , bk) + 1 = (bi + 1 , . . . , bk + 1)

which contains k-bit words. We define constants and operations which specify
the standard boolean operations of and, or and negation and a “successor”
function on the binary numbers. We note the set Wk is cyclic; that is,

W* = = {0 ,1 , . . . , 2* — 1}.

Thus an overflow error from the application of the successor function is handled
simply by returning zero. The set F(Addr , Wk) contains all possible configu­
rations of the address space in the machine. We can set the address space
Addr to the natural numbers N to make F(N, Wk) the set of all spatial objects
mapping a natural number to a k-bit word.

Setting the space Addr = Wi gives us all spatial objects F(Wi, Wk) assign­
ing k-bit words to addresses of length I.

E xam ple 4.2.5 (T he R ing o f R eal N um bers) Let X = R and define the
E-algebra R as

4.2 Algebras o f Spatial Objects 49

A lgebra R

C arrie rs R

C o n stan ts 0r , 1 r ► R

O p era tions + it5 : R x R —> R
—r R —> R

with the operations + r , —r and •r defined on R as usual. Then F(R, R) denotes
the set of all total functions / : R —> R mapping points in R to points in the
ring of reals R.

E xam ple 4.2.6 (Sequences) Let X = N and define the E-algebra N

A lgebra N

C arrie rs N

C o n stan ts
z;T0

O pera tio n s +1 : N - ^ N
+ : N x N - + N
x : N x N —* N

to be the Peano-arithmetic algebra. We can define F (N, N) to be the set of all
sequences of natural numbers. For example, e G F (N, N) defined by

e(0) = 0, e(l) = 2, e(2) = 4 , . . .

denotes the sequence of the even natural numbers. We can write this sequence
in a more traditional notation as

(^ ” 0 = (0 ,2 ,4 ,...) .

E xam ple 4.2.7 (P ro d u c ts) Now, consider the product of algebras

a * =n a ‘ >
xex

4.2 Algebras o f Spatial Objects 50

indexed by an arbitrary set X , where there is a S-algebra for each coordinate
of the product Ax . In the standard construction of the product, a typical
element of A x has the form

(• • • j CLX j • • •)

where ax (at the ^-coordinate) is an element of the S-algebra A x. In the special
case that each Ax = A for all a: 6 I , we actually have the collection of all total
functions mapping the set X to A. That is,

A x =]^[{^ • x € X} = {</>:</> is a function on X to A},

which is precisely the definition of F (X , A).

We refer the reader to [43] (p.271) where a detailed construction of a S-algebra
over the direct product A and a formal proof shows tha t n ^ = F (X , A).

4.2.2 Pointwise Data Operations on Spatial Objects
For this section, let S be a general single sorted signature with sort s and A a
S-algebra. New operations can be constructed on F (X , A) from the S-algebra
A by way of pointwise lifting. This makes F (X , A) into a S-algebra as follows.

We specify a constant function such that for each constant symbol c € S*
the function

cf(x ,a) '• X -h► A € F (X ,A)

is defined by
cf(x ,a)(x) = cA, for all x e X .

For each function symbol / 6 S f with / : sn —► s, and ^ £ F (X , A) for
1 < i < n, we define the operation / f(x ,a) '• F (X , A)n —> F (X , A) pointwise as

fF(X,A)((f>l, • • •, (f>n){x) = f A(M x), • • • > 0*0)
for all x 'm X .

These constants and operations on F(X, A) produce a S-algebra F which we
display as:

4.2 Algebras o f Spatial Objects 51

Algebra F{X,A)
Carriers F(X,A)
Constants • ■ • i c f (x , a) : X —> A,...
Operations ...JF{XiAy.F(X,Ar^nX,A),...
Definitions CF (X , A) (X) = CA

f F (X , A 0 1 , ■ • • , 4>n)(x) = f A (M x)> ■■■> <t> n M)

One interpretation of the pointwise operator / f (x ,a) i s the evaluation in
parallel, or the simultaneous application, of the operation /a on all points x in
the space X .

Notice tha t this algebra F (X , A) is very abstract since one can operate only
on spatial objects - operations on both space and data are out of bounds! In
the next section some operators are collected that allow access to the data of
the spatial objects we define. We address the formal status of the definition
above in Section 4.2.5. For now, we collect several more examples of pointwise
lifted operations.

Examples

Example 4.2.8 (C onstructive Volume Geometry, Continued)
From Chapter 2, Section 2.4.1 we have the following algebra from which the
operations are lifted pointwise from those in the scalar field <j): E 3 —» S.

4.2 Algebras of Spatial Objects 52

Algebra S F

Carriers F (E 3, S)

Import S

Constants 0,1 > F (E 3,S)

Operations Max : F (E 3, S) x F (E 3, S) -> F (E 3, S)
Min : F (E 3,S) x F (E 3,S) -* F (E 3,S)

+ : F (E 3, S) x F (E 3, S) F (E 3, S)
- : F (E 3, S) x F (E 3, S) -> F (E 3, S)
• : F (E 3, S) x F (E 3, S) F (E 3, S)

Definitions Max((j> i, 0 2) (a:) = max(0i(rc), 02 (x))
Mm(0i , 02)(a:) = min(0i(a;),02(z))
(0i + 02) (x) = <f>i(x) + 0 2(x)
(0i - 02)W = 0i(a;) - 02(00)
(01 • 02)0*0 = 01W - M x)

Example 4.2.9 (M achine M odelling, Continued)
Consider the situation where Addr = N and the set of spatial objects axe
F(N, {0, l } k)\ all spatial objects 0 : N —> (0, l } k mapping the natural numbers
to k-bit words representing the values 0 to 2k — 1 .

Hence each 0 in F (N, {0, l } k) represents a particular state in a machine,
whose memory addresses are indexed by the natural numbers.

We can define the logical operations A, V and -< over F(N, {0,1}*) by
performing the operations on the valued stored at each of the memory addresses
at two machine states 0 and 0'. For all n € N we define

(0 A <t>'){n) = A 4>'{n)
(0 V 0 ')(n) = 0 (n) V (j>'{n)

= ^ (0 M)
We define a successor function for a state 0 in F(N, {0, l} fc) by adding + 1 to
the value stored at each memory address. For all n 6 N we have

0 + 1 = 0(n) + 1,

where 1 : N —> {0 , l} fc is the state which has the value 1 stored at every memory
location. This operation on the spatial object (or machine state) has the effect
of adding 1 to the data at each address space.

4.2 Algebras of Spatial Objects 53

E xam ple 4.2.10 (R ing o f R eal N um bers , C on tinued)
Recalling the ring R = (R; 0#, 1#; — R, +#, -r) of real numbers, we pointwise
lift the constants 0,1 in R to define the constants 0 ,1 G F(R, R) as

0 (x) = 0 fi V iG X ,

l(:c) = I# Va; 6 X.

The operations +«, — r and -r in R are pointwise lifted to define

(/ + 0) 0 * 0 = f (x) + R g(x)
(- /) (*) = - R(f(x))

(/X0)W = f { x) - R9 { x)

producing an algebra on F(R, R).

E xam ple 4.2.11 (Sequences, C ontinued)
Recalling our example where F (N ,N) represented the set of all spatial objects
assigning data in the Peano algebra N = (N; 0; n + 1, n + m, n x m) to points
in the space X = N, we can lift the Peano-operations of N to operations on
sequences in F(N, N) as follows: For / , g 6 F (N, N) we define

(/ + 1) 0 * 0 = / W + 1.
(/ + 0) 0 * 0 = /O*O+0 O*O,
(/ x 0) 0 * 0 = / (z) x g(x)

In traditional sequence notation, these operators are written as

(0 *<)£o + !) = (**» + l)i^o

and
(ai)So + = iai + h)™ o

4.2.3 Pointwise Space Operations on Spatial Objects
We have seen many examples in the previous section showing how one may
take operations on the data in the carriers of the E-algebra A and lift them
to operations on the spatial objects in F (X , A). We now study how one may
pointwise lift operations on space.

Let X be a space and A some arbitrary E-algebra. Let

p - . x ^ x

be some operation on the space X . We define an operation

0 : F (X , A) - * F (X , A)

such that for any spatial object (j) 6 F (X , A) and point x in the space X

p{4>){x) = 4>{p{xj).

4.2 Algebras o f Spatial Objects 54

Example 4.2.12 (2D Grids, Continued) Recall Example 4.2.2 where we
defined the space X = Z2, the 2D integer grid which is mapped to data in a
E-algebra A.

Now suppose we have define an operation working on space : Z2 —> Z2

such that
(x, y) + k = (x + k, y + k)

for a fixed number k in Z.
We define an operation +pk : F {I? ,A) —» F (Z 2 ,A) for a spatial object

</> 6 F (Z 2, A) and a point (x , y) 6 Z2 as

(+ f / 0 W>)(z,2/) = 0 ((z ,2/) + fc)
= (j)(x + k ,y + k)

Similarly, we define another operation -k : Z2 —» Z2 as (x,y) • k = (x - k ,y - k)
and lift this to the operation -pk : F (Z 2,A) —> F (Z 2,A) as

(•Ffc)(<M(®,3/) = 4 ((x ,y) 'k)
= (j)(x ■ k ,y - k).

Example 4.2.13 (M atrix Transformations)
Rotation is an important operation in any computer graphics application.
Standard textbooks on graphics such as [6] show how matrix transformations
define rotation of a point about the origin by an angle 6. We extend this to
show how we can rotate spatial objects in two-dimensions.

Let X be the two dimensional Euclidean space E2. To calculate a counter­
clockwise rotation by an angle 0 about the origin we use the matrix transfor­
mation pe : X —» X defined by

cos 9 — sin 9 X

sin 9 cos 9 y.
We can pointwise lift this to operations on F (X , A) as follows: define fie :
F(X, A) —► F(X , A) as

P e W f a y) = <l>(Pe((x,y))
= <j)((cos9 • x — sin# • y,sin9 • x + cos6 • y)).

4.2.4 Covariance and Contravariance
In this section, we study general transformations on data and space: covariant
and contravarient functions between algebras of spatial objects.

Covariant functions modify data in spatial data types. For example, if we
have a three dimensional object represented in space, we may wish to change

4.2 Algebras o f Spatial Objects 55

attributes such as colour or opacity. Any data attributes associated with the
object can be modified by means of a covariant function.

Continuing with this example, one can imagine contravariant transforma­
tions modifying the shape of an object in three dimensional space. We could
define a contravariant function to rotate an object about the x axis, or to scale
it by a factor of 2 .

We have the following definitions:

Definition 4.2.2 (Covariant Functions) Let F (X ,A) and F (X ,B) be two
functions spaces where A and B are Y,-algebras. For the mapping a : A —> B
we define a : F (X , A) —> F (X , B) as

a((f))(x) = (ao(/))(x)
= ot(<l>(x))

for a given point x E X and (f) E F (X , A).

Covariant functions translate data. Alternatively, we may translate the space
by contravariant functions:

D efinition 4.2.3 (Contravariant Functions) Let F (X ,A) and F(Y ,A) be
two functions spaces where X and Y are sets and A is a E -algebra. For the
mapping (3 : Y X we define the function (3 : F(Y, A) —> F (X , A) as

P(<P)(v) = (<f>°P)(y)
= <l>(P(y))

for a given point y E Y-, and E F (X , A) .

4.2.5 The Evaluation and Substitution Operators
So far we have seen how pointwise lifting can be used to construct operations
on spatial objects. We now discuss some useful operations on spatial objects
tha t allow access to the actual data stored in space as a means of retrieving
and modifying it.

To this end, we expand the signature E by adding the operators eval and
sub [43]. Generally speaking, the eval operator is used to evaluate a spatial
object <j) E F (X , A) on a point x E X . We have

eval : F (X , A) x X —> A

defined as
eval(4), x) = 4>(x),

which returns a data value in the algebra A.

4.2 Algebras o f Spatial Objects 56

We may also wish to update a spatial object so tha t it returns a new data
element at a specific point. The sub operator takes a point x E X , a data value
a E A and spatial object (j) E F (X , A) and sets 4>{x) to the value a. We have

sub : F (X , A) x X x A F (X , A)

defined as
i t i \/ \ f a if x = y, sub(4>,x,a)(y) = otherwise

for a point y E X .
We construct a new signature £ + using the sorts so, sp and s, the constants

cso, cap and cs, and the original operations / E E f 1 along with the operations
eval and sub.

For the interpreting algebra F +, we add the carriers F (X ,A), X and A s,
the constants cp, cx and ca and the functions / a : A™ —> A s from the algebra
A. The operators eval a and sub a are also included.

We list this new many sorted signature £ + with the general interpreting algebra
F + as follows:

Signature £ +

Sorts sp, so, s

Constants . . . , ca • ► s , .. .
• • • J 9̂0 ■ ̂ SO, . . .

Operations s x - ' - x s —> s , . ..
. . . ,F : son —* so ,. . .
sub : so x sp x s —> so
eval : so x sp s

4.2 Algebras o f Spatial Objects 57

Algebra F +

Carriers F (X , A) , X , A S

Constants . . . , ca > A s, . . .
. . . , cF+ : X —* A a, . . .
. . . , cx ► X , .. .

Operations . . . , /a '• A s x • • • x Aa —► Aa, . . .
. . . J F+: F (X , A y - > F (X , A) , . . . ■
subA : F (X ,A) x X x A s ^ F (X ,A)
eval a : F (X , A) x X —> A s

Definitions cF+ (x) = ca
f F+((t> 1 , ...,<t>n) (x) = f A((l>l (x) , . . . , (/>n(x))

su b (t ,x ,a)(») = { ^ v) f t ^ e .
eval((f),x) = <f>(x)

As a technical point of the status of equations in this thesis, we make the
note that pointwise lifting is formally defined as an equation

eval(F((f> i , . . . , </>„, x)) = f(eval(<p u x) , . . . , eval(<f>n, x))

over the signature £ +.

4.2.6 Subalgebras of F(X, A)

We prove two lemmas that give useful results on the relationship between the
data in A and the spatial objects in F (X ,A). We first show that pointwise
lifting preserves the subalgebra property.

Lem m a 4.2.1 (Pointw ise L ifting of a £ -su b a lg eb ra)
Let A be a E -algebra. I f B C A is a E -subalgebra then F { X , B) C F (X , A) is
a E -subalgebra of F (X , A).

P r o o f Let <f>i}. . . , (j>n be functions in F(X, B). The operation

4.3 Terms 58

is a typical pointwise lifted operation of F (X , A) (constants are lifted in the
same manner). For all x G X we have

= /b (0 i(^), • • • ? 0n(^)) since B is a E-subalgebra
= /f (x ,b)W > i, • • • ,<l>n)(x)

satisfying the conditions for F(X , B) to be a E-subalgebra of F (X , A). ■

L em m a 4.2.2 Suppose S (X ,A) is a E-subalgebra of F (X , A). Define Bx =
{(f>{x) | (f) G S(X , A)} for x in X . Then Bx is a E-subalgebra of A.

P r o o f Assume S (X , A) < F (X , A). Pick a n x e l and define Bx = {(f>(x) \
(j> G S(X , A)}. Now, pick values b\ , . . . , bn G Bx. Then there exists 0 i , . . . , 4>n G
S (X ,A) such that 4>i(x) = b{. We have

f A(bu . . . , 6 n) = f A((f>i(x) , . . . , 0 n W)
= fF(X,A)((j> 1, • • • , <l>n){x)

By our assumption we have the equation

fF(X,A)(<l>U ■ • • > 0n) (®) = fs(X,A){</> 1 , • • • , 0n) (z)

= 4>' e S { X , A)

But 0' G 5(X , A) and <f'(x) = /a(&i, • • •, bn) G Bx completing the proof. ■

4.3 Terms
This section describes terms formed from the signature E and variables in the
set Y. For simplicity, these terms are single sorted with the sort s.

We shall define evaluation of these terms over the E-algebras F (X , A) and
A and prove

• the Validity Theorem 4.3.1 which shows equational validity is equivalent
on both A and F (X ,A) for equations of the form t = £',

• the Validity Theorem 4.3.2 which shows the validity for conditional equa­
tions of the form ti = t[=$> t = t! are equivalent on both A and F { X , A),
and

• that universal formulae which are true on A do not necessarily hold on
FiX, A).

4.3 Terms 59

4.3.1 Term Evaluation
Roughly speaking, term evaluation over a E-algebra A is a mapping from the
set of terms T(E, Y) to A that works out the value of a term in A. The aim
of this section is to define term evaluation over E-algebras A and F (X , A) and
show their equivalence.

We define the collection of assignment functions th a t map variables in Y
to data in A and F (X , A) as

V (Y ,A) = { v . Y ^ A } ,
V (Y ,F (X ,A)) = { v : Y - * F (X , A) }

respectively. We shall use these assignment functions to define two functions
mapping terms in T(E, Y) to data elements in algebras A and F(X , A).

Now, we have already seen the definition of term evaluation in Section 3.3
for the many sorted case, however it is worthwhile to reproduce it here. This
definition for the single sorted E-algebra A is a modification of the one found
in [55] and is as follows:

D efinition 4.3.1 (T erm E valuation) Given an assignment v : Y —► A of
an element v(y<) € A to a variable yi £ Y , we define the term evaluation map

{ - r A - . T (Z , Y) x V (Y , A) - * A

by induction on the structure of terms: for all constants c £ E*, variables
yi £ Y , operations in f £ Ef* and terms t i , . . . , tn in T (E, Y) we have

H a =

h i l VA = v (yi) >

1 / (^ 1 , . • • , £ u) 1 a = / a ([* i] a , . - . , [U a) -

The notation we use in this definition is described in [55] as

[t}VA = the evaluation of t over A with values of the variables given by v

In lieu of an assignment function, we may also supply the values for the
finite set of variables that a term t consists of by means of an n-tuple. For
example, we write

t(<2 l, . . . , Un)

to mean that the variables in the term t £ T (E ,y) are given the values

Vi • Ci , . . . , yn .— £in,

for ai in A.
We define the term evaluation map

[-]* : T(S,y) x V(Y,F(X,A)) - F{X,A)

4.3 Terms 60

for the E-algebra F (X , A) inductively with the assignment function v : Y —»
F (X , 4̂) by the following cases:
B ase Cases:

1 4 vf = C p

h i fF = v(yt)

S tru c tu ra l In d u c tio n

[/(^l) • • • j — f F(M VF, • • ' »

We use the notation {ifp to mean the evaluation of t over F (X , A) with values
of the variables given by v, and write

p]F(0 i , . . . , 0 n)

to mean the evaluation over F (X , A) of a term t using the values fa € F (X , A)
with 1 < i < n, rather than denoting a specific assignment function.

4.3.2 Pointwise Lifting of Term Equivalence
We want to show the equivalence of term evaluation on algebras F (X , A) and
A.

L em m a 4.3.1 (T he Pointw ise L ifting o f T erm E quivalence)
For any term t in T(E, Y) and spatial objects f a , (f) n in F (X , A), the equa­
tion

• • • , (f>n)(x) = lt]A(fa(x), • • • > <f>n{x))
holds for all x £ X .

P roof We prove the result using structural induction on terms.
B ase Cases: For each constant c in E*, we have

[cM 0 1 ,.-.,0 n)(z) = CF(x)
= cA
= lc]A{fa{x),...,(f)n{x)).

For each yi E Y and 1 < i < n, we have

= fa(x)

Inductive S tep: Let t = f (t \ , . . . , tn) where / E Esn)3 and t i , . ..» tn are terms.
We have

. . . , tn)J f (0 1 , • . . , <f>n){x) = / f ([^ i] f (0 1 , • • • , 0 n) , • • • , W F { f a , • • • , <l>n))(x)

4.3 Terms 61

by the definition of term evaluation on F (X , .A). Prom the pointwise definition
of fp this is equal to

= /a([UJf(</> 1, . . • , 0n)(z), • ■ • , P „] # l , • . . , (/>n)(x))

and by the induction hypothesis on the U we have

= /aAM UOM s), • • • , K (x)), . . . , ltn]A(<l>l(x)> • • • » W ®))
= l f (t i , .. •, O l U W h M , . . . , <f>n(x))

completing the proof. ■

4.3.3 Equational Validation
Using the pointwise lifting results of term equivalence in the previous section,
we prove a useful result proving equational validity also lifts. To begin, we
define the notion of satisfiability of equations as found in [43]:

D efin ition 4.3.2 (E quational V alid ity) Let A be a E-algebra. The equa­
tion

t = t!

of terms in T (£ , V) is satisfied by, or is valid in A if

V(fli, • • • ? Ojjf) [[£]/i(q.i, . . . , an) = [t J ^ c q , . . . , Un)] >

for a{ € A with 1 < i < n.

Equational validity of an equation t = t' over the algebra A will be denoted
by

A \ = t = t \

and we use this definition in the obvious way for the algebra F (X ,A): the
equation t = t' is valid in F (X , A) if

V(01, . . . A n) ...,(j>n) = • • • , <f>n)]

for 4>i € F (X , A) with 1 < i < n.

T heorem 4.3.1 (V alid ity T heo rem) For any E-equation t = t' the follow­
ing are equivalent:

(1) t = t' is valid in A; i.e. A \ = t = t ' .

(2) t = t' is valid in F (X ,A); i.e. F (X ,A) \=t = t'.

In symbols,
A \ = t = t' *=> F {X ,A) \=t = t'.

4.3 Terms 62

P r o o f (1) => (2). Assume tha t A (= t = t'. Choose any 0 i , . . . , 0n in F (X , A).
For a point x E X , let ai := 0 i (r) , . . . , an := 4>n(x). We have

M f (0 i , • • •, </>n)(z) = W a(0i (^), • • •, 0n(z)) by Lemma 4.3.1
= • • • i Q>n)
= [t'U (ai, • • •, an) by Hypothesis (1)

= [*']f(0 1 , • • ■ ,(f>n)(x) by Lemma 4.3.1.

(1) <= (2). Conversely, we now assume tha t F (X ,A) \= t = t' is true.
Choose any ai , . . . , an in A. We construct the constant functions

01 (*̂) ®lj • • ' > 071 (*̂) ®7l)

for all x E X . Clearly these functions must be in the set F (X , A) because each
are total mappings from X to A. Now,

[t]yi(ai,. . . , On) = W a(0 i (®), • • ■, 0nM) by construction
= W f (0i , • • •, 0n)O*O by Lemma 4.3.1
= P ']f (0i , • • ■, 0n)(z) by Hypothesis (2)
= P /]a(0i(®), • • •, 0nW) by Lemma 4.3.1
= [i;]>i(oi, •. ■, an) by construction. ■

The Validity Theorem is actually a result of the fact that A x = F (X ,A),
shown in [43] (p.278). We have spelt out the proof here in detail as we use it
extensively in our work with data types. The next corollary uses the theorem to
show that if an implementation A of the signature S satisfies a set of equational
laws, then the pointwise lifted implementation F (X , A) of E also satisfies these
equational laws.

C orollary 4.3.1 Let A satisfy a set E of E -equations. Then F (X ,A) also
satisfies E.

P r o o f Let t = t' be a typical E-equation in E satisfied by A. Then by the
Validity Theorem 4.3.1

A \ = t = t' «=► F (X ,A) \ = t = t'

proving the result. ■

We will see this corollary used in Sections 4.3.4 and 4.4 and the limitations
of the Validity Theorem will also be shown with a counterexample.
We now turn to conditional equations: Let ti = t[, . . . tk = t'k be equations of
terms in T(E, Y). Equations of the form

t\ = t[A • • • A tk = t'k = > t — t'

4.3 Terms 63

are called conditional equations and are valid in A if

V(oi,. . . , an) [[f ik (f l i , • • • ? dn) I h U a i , • • • j dn)

j4.(^ 1 j • • • 5 dn) • • • > dn)

implies
j • • • 5 dn) = , . . . , Un)j .

Theorem 4.3.2 (V alidity T h eo rem For C ond itional E quations)
For any E conditional equation ti = t[=$■ t = t' the following are equivalent:

(1) t\ = t[A • • • A tk = t'k ==> t = t! is valid in A,

(2) t\ = t[A • ■ • A tk = t'k => t = t' is valid in F (X , A).

That is,

A |= ti = t[A • • • A tk = t'k =$■ t = t'
4 =^ F (X , A) |= t\ = t'i A • • • A tk = t'k = > t = t ' .

P r o o f Without loss of generality, assume tha t k = 1.
(1) => (2). Suppose that (1) holds and F (X ,A) |= ti = t[. This means that

M f(<£ 1 , • • • , 0 n) = K J f (0 1 , • • • ,(j>n)

or equivalently, for all x E X:

|M f (0 1 , • ■ • , (f>n)(x) = |K If(0 1 , . . . , <f>n)(x).

By Lemma 4.3.1,

= [tl]ylWl(®),---, 0 n(a:))
K 1 f (0 i,- .. ,(j>n)(x) = [ti]yi(0 i (a ;) , . . . , 0 „(a;))

By the conditional equation law in A (assumption of (1)), we know

I M U O M z) , . . • , <f>n(x)) = [1?]a(<I>i(x)> • • •) <f>n(x))

and again by Lemma 4.3.1

M f (0 1 , • ■ • , <t>n)(x) = Mf(</>1 , • • • , <f>n)(x).

Hence t\ = t[F(X , A) \=t = t'.

(1) 4= (2). Now suppose that (2) holds and t\ = t[is valid on A. This means
tha t for all a\ , . . . , an G A

• • • i dn) = |^i](a i) • • •»an).

43 Terms 64

For each value a* in A, 1 < i < n, we construct the constant function <j>i
such that for all x € X , (fi(x) = a*. By Lemma 4.3.1 the following equalities
hold:

K l U W > l M , • • • ? 0 n M) = K W 0 1 , • • • , K){x).

But by the assumption that (2) is valid,

M f (4> 1, • • • , M W = • • • , (f>n)(x)

and by Lemma 4.3.1

l t]F {(f)U . . . , (f)n){x) = {t]A {(f)1(x)) . . . , (l)n (x))

[t']F(0 i , . . . , 0 n)(a:) = l t ']A ((f) i (x) , . . . , (i)n (x))

Hence
I M U O M a r) , • ■ • , 0 n W) = I t ' h t t i (x) , • • • , 0 n (a ;)) .

That is, A |= t = t'. ■

4.3.4 Pointwise Lifting of Commutative Rings
We can apply the theoretical results of this section to the case where the £-
algebra A is a commutative ring. Recall the set of equational axioms of a
commutative ring from the Preliminaries, Section 3.4. We prove

Lemma 4.3.2 If the £ -algebra A is a commutative ring then the pointwise
lifted Tt-algebra F (X ,A) is also a commutative ring for any space X .

P roof We define

A lgebra F (X ,A)

C arriers F (X , A)

C onstan ts 0 ,1 * F (X ,A)

O perations + : F(X, A) x F (X , A) -> F (X , A)
• : F (X ,A) x F (X , A) -> F (X , A)
- : F (X , A) -> F (X ,A)

43 Terms 65

where the constants and operations are pointwise lifted from A as usual. We
stow that F (X ,A) € AlgifEcmng,CRing). Since each of the axioms listed
ir CRing are equations, Corollary 4.3.1 applies and setting E = CRing , we
immediately conclude that F (X , A) is a ring. ■

We have just shown that each of the axioms in the algebraic specification
of the commutative ring A pointwise lift to F (X , A), and in general this is true
for all equational axioms by the Validity Theorem 4.3.1. Particularly, for any
set X the sets

F{X, Z), F (X , Zn), F (X ,Q), F (X , R) and F (X ,C)

are all commutative rings. Furthermore, we have also shown that conditional
equations lift to F (X , A) by the conditional equation Validity Theorem 4.3.2.

In this section we show that universal formulae do not have this lifting
property. Specifically, we add to the specification of A a universal formula and
show through a concrete counterexample that F {X ,A) does not satisfy this
new specification. To this end, we make the following definitions from [39]:

D efinition 4.3.3 (D ivisors of Zero) Let A be a ring, and a an arbitrary
element in A. If there exists a nonzero element b e A such that ab = 0 or there
exists a nonzero element c € A such that ca = 0 then a is said to be a divisor
of zero.

Clearly a = 0 is a divisor of zero in any ring aside from the trivial case
when a is the only element of the ring. We say that a is a proper divisor of
zero if it is a non-zero divisor of zero. Thus we define

D efinition 4.3.4 A commutative ring with unit without proper zero divisors
is called an integral domain.

By this definition, for any elements a, 6 in the integral domain A the formula

a-b = 0=>a = 0 V b = 0 (4.1)

is true. This is an example of a universal formula and any ring that satisfies this
condition is an integral domain. We add Formula (4.1) to the list of axioms
in CRing to make the commutative ring A an integral domain. We aim to
show that the pointwise lifting of the ring operations of A does not necessarily
produce an integral domain on F (X ,A) .

Observe that for F (X ,A) to be an integral domain, we would need the
property that for any elements / , g in F (X , A) the formula

f - g = 0 ^ f = 0 V g = 0,

holds, where 0 € F (X , A) is the additive identity element of F (X , A) (the zero
function). We show that this is not the case by a counterexample: let X = Z
and A = Z.

43 Terms 66

Assume: / • g = 0. By the definition of pointwise lifting, this means that
for all x in Z

U ' 9){x) = f i x) ■ g{x) = 0 .

We show that this does not imply / = 0 V g = 0. Define two functions

v f 0 if x > 0 ,
/(x) = \ 1 If® < 0.

and
f v f 1 if rr > 0 ,

s(x) = \ 0 If® < 0.
We have the situation /(a:) • g(x) = 0 for all x in Z but neither / or g is the

zero function 0. That is,

f - g = 0 = f r f = 0 \ J g = 0

and thus F(X, A) is not an integral domain. Therefore, by this counterexample,
universal formulae that are true on A are not necessarily true on F (X iA).

4.3.5 Term Definable Functions
Suppose we are given a signature £ and an interpreting E-algebra A. We can
build a new signature E' whose interpreting algebra A' implements function
symbols by evaluating terms in T (£ , Y) over the E-algebra A.

We begin by defining precisely what it means for a function to be term
definable.

D efinition 4.3.5 (Term D efinable O p era tions) Let E be a signature and
A a E -algebra. We say that a function <f>: A n —> A is Y-term definable if there
exists a term u(yi , , . . . , yn) G T(E, Y) such that for all a\ , . . . , an G A

ip(a\ , . . . , an) = . . . , j/n)li4 (®i> • • • > ®n)*

Note that by this definition any £-operation implemented by A is trivially
E-term definable.

For some subset H C A s of the carrier set of A, we define the subalgebra
(H)e generated by the repeat applications of the E-operations on the subset
H. Starting with the elements of H, we construct the set by recursion on the
terms in T(£, Y):

B ase Cases:

hi AM e {H)z
for the variable y G T (E, Y) and a value Vi G H ,

14a e <Jf)E

for the E-constant symbol c > 5 ,

4.3 Terms 67

Inductive Case:

[/ (£i , . . . , tn)]A(hi , . . . , hni) G (H)x

for E-operation / : sn —> s, terms £1 , . . . , t„ G T(E, y) and h i , . . . , hn €
H.

Now consider another signature E' for a new algebra A' which we build
from the E-operations of A:

S ignature E'

Sorts s

C onstan ts k > s

O perations g1 : sni —> s , , gm : snm —> s

The interpreting E'-algebra A! is defined such tha t each function symbol g% :
sUi —> s for 1 < i < m is defined using terms in T(E, T). That is, for any input
values a i , . . . , ani in A, we calculate the value gA,(ai , . . . , anJ by evaluating
Ui(yi, . •., yni) over the E-algebra A. In symbols,

9a, P̂' î ■ • • > Q"n.i) = |H (2/l> • • •) Utii)]A(®1 > • • • j ^nt)

for all a . . . , aUi G A and 1 < i < m. In particular, any constant operation
k > s will be interpreted by the evaluation of a closed term u in T (E ,y).
The E-term defined E'-algebra A' is displayed as follows:

A lgebra A'

C arriers A s

C onstan ts kA> . ► A s

O perations /-.l . A^i _k A ■ Â tti9A! ■ ‘* ■”*} • • • j 9A! • —> A s

D efinitions kA> = H U
g \ , {au . . . , a ni) = H (y i , . . . , 2 /^ 1) 1 A(^ 1 j ■ • • j Q>ni)

g%,(au . . . , a nm) = [um(y i , . . . »2/nm)]U(a lj • • • 5 a nm)

43 Terms 68

Snce each operation in S ' is defined by the terms in T(E, Y), we can define
amapping to translate terms from T (E ',Y) to T (S ,y) .

D efinition 4.3.6 We define a function a : T (S ',y) —> T (E ,Y) recursively
over terms in T (S', Y) as follows:

<*(y) = V,

for each variable y e Y , and
a (k) = u,

for each S '-constant k > s where u is a closed term in T (S), and

a(g%(t i , .. = Ui{a(ti) , . . . , a(tni))

when t i , . . . , t n'E T (S ',y) and g% \ sni ^ s is a S '-term definable operation
defined by the term u E T (E ,Y) .

Let H C A be a subset of the carrier set A and consider the set (H)jy of
all elements generated by the repeated application of operations in S ' on H.
We define such a set recursively on the S'-terms:

hlA>(vi) e (H)v

for the variable y E T (E ',Y) and a value Vi E H,

MU' e (H)v

for the S'-constant symbol k > s,

• • • 5)]i4'Mi5 • • • Mm) ^ (#) e'

l9m{h, • • • j^mJlU'Mi, • • • , h nm) E (H)v

for S-operation g* : sni —> s, terms t i , . . . , tn. € T {S', Y) and h i , . . . , hUi € if ,
for 1 < i < m.

The main result of this section shows that (H)t,' is indeed a subset of {H)%.
To begin, we first prove a technical lemma:

Sub Lem m a 4.3.1 For any term t E T (S ',T)

IMU'Mi,. . . , a ^ = [o'W JaM , • • •, On)

far all a i , . . . ,an E A.

4.3 Terms 69

P r o o f We prove the result by structural induction over T (E', Y).
Base cases: For variables y E Y

[yjA'(ai) = fli = IvhM = [a(y)]^(ai).

For constant A ; > s

[fc]U' = kA> = [u]a = [a (fc)]U -

S tru c tu ra l Induction : Let t i , . . . , £ n G T (E ',y) . For any E'-operation
gi . sui s we have

[y (^1) • • • i ^n)]U'(0 l, • • • i On)

since g% is a E'-term defined operation we have

= • • • j , On)
= (f l i , . . . , Q>ri)-> • • • j [^nil-A7(&1 > • • • , On))

by the definition of term evaluation. The base cases yield:

• • •, o„), • • •, la(tni)]A(ai, • • • , On))

and by definition of term evaluation

= |[Ot(£lj • • • 5 £ni)]U(Oi, . . • , dn)

then by the definition of the mapping a we have

= [^ (p (^1) • • • , ^ni))J.A(Oi> • ■ • , On)

which completes the proof. ■

L em m a 4.3.3 I f H C A then (H)jy C (H)£.

P r o o f For any E'-term t and values h i , . . . , hn in H we have

. . . , hn) G (#)£ '

by the recursive definition of But by SubLemma 4.3.1

[£]U'(hi,. . . , hn) = [o:(£)]U(hi, . . . , hn)

£ (H) z

since a(t) is a E-term and by the recursive definition of (H) ■

4.4 Pointwise Lifting o f Lattices to F(X, A) 70

4.4 Pointwise Lifting of Lattices to F (X , A)

Recalling Definition 3.6.5, we consider lattices as an algebraic structure. Let
L be a non-empty set. We define operations meet and join , denoted A and V
respectively, and specify axioms that these operations satisfy. We display the
lattice signature E/^ and axioms Tiat as follows.

S ignature Tilat

Sorts I at

O perations A : lat x lat —> lat
V : lat x lat —> lat

We list the eight lattice axioms:

Axiom s Tiat

Idempotent a A a = a
a V a = a

Commutative a A b = b A a
a V b = 6 V a

Associativity a A (b A c) = (a A b) A c
a V (5 V c) = (a V b) V c

Absorption a A (a V 6) = a
a V (a A 6) = a

The signature E/af and the axioms in Tiat define an axiomatic specification
for lattices. The set of all E ^ ralgebras which interpret the operations A and
V and that satisfy the axioms in Tiat is denoted as

Alg(Elat,T lat).

D efinition 4.4.1 (L attice) A E iat-algebra L is defined to be a a lattice if,
and only if, it satisfies the above axioms, i.e., L 6 Alg(Hiat,Tiat) .

A useful example of a lattice is a lattice structure on the real numbers:

4.4 Pointwise Lifting o f Lattices to F(X, A) 71

E xam ple 4.4.1 Let R = (R, A, V) be a lattice where the meet of two elements
x, y G R is defined as x A y = min(a;, y), and the join as x V y = m ax(r, y).

We display this E/a r algebra as:

A lgebra R

C arrie rs R

O perations A : R x R —> R
V : R x R —» R

D efinitions x A y = min(a:, y)
x V y = max (a;, y)

It can be easily shown that the operations defined in R satisfy the lattice
axioms, and hence R G Alg(T>iat,Tiat).

4.4.1 The Pointwise Lifting of Lattices
We define the operations of meet and join, Ap and Vf respectively, on F (X , L)
pointwise by

(/ AFg)(x) = f (x) AL g(x),

and
(/ Vf 9)(x) = f (x) v L g(x).

We prove

C oro llary 4.4.1 I f L is a lattice then F { X , L) satisfies the axioms of a lattice.
That is, F(X, L) G Alg(Tiiat,Tiat).

P r o o f Since the lattice axioms are equational formulae, this result follows
directly from the Validity Corollary 4.3.1. That is, if the result holds on L,
then it holds on the pointwise lifting F (X , L). ■

E xam ples

To illustrate, we can extend Example 4.4.1 pointwise as follows. Let R =
(R, A, V) be the lattice over the real numbers and denote the set of all functions
mapping points of X to R as

4.4 Pointwise Lifting o f Lattices to F(X, A) 72

We define the meet and join operations for / , g G F (X , R) as (/ A g){x) =
mm(f (x) , g(x)) and (f \ / g) (x) = max(f (x) ,g(x)) . We display the Eja r algebra
as follows:

A lgebra F(X, R)

Im p o rt R

C arrie rs F(X, R)

O p era tions A : F (X , R) 2 —> F(X, M)
V : F (A , R) 2 —> F(X, R)

D efinitions (/Aff) (i) = f (x) Ag(x)
(/ v< ?) W = / W v ? w

4.4.2 Sublattices
D efin ition 4.4.2 (S ub la ttice) Let L be a lattice. A lattice L ' is a sublattice
of L i f and only i f L' is a ’Eiat-subalgebra of L.

This means that V is closed under the meet and join operations. That is, for
x ,y 6 L' both x A y and x \ / y are in L '.

The unit interval [0,1] C R and the meet and join operations constitute
a sublattice of R = (R, A,V) since for x ,y [0,1] x A y = min (x,y) and
x V y = max(a;, y) are both in [0,1]. We display this Eiarsubalgebra as follows.

A lgebra I

C arrie rs [0 , 1]

O p era tions A : [0,1] X [0,1] —» [0 , 1]
V : [0,1] X [0,1] —>[0 , 1]

D efinitions x A y = min(a;,y)
x V y = max(x, y)

In fact, any subset of R is a sublattice of R

4.5 Applications to CVG 73

Lemma 4 .4 . 1 Let L = (L , Al , V l) be a lattice and F (X , L) = (F (X , L), A, V)
pointwise lifted lattice. I f L' is a sublattice of L then F { X , L ') is a sublattice

of F(X, L).

P r o o f This is immediately true from Lemma 4 .2 .1 . ■

In particular, we know that I = ([0 , l] ,A,V) i sa sublattice of R = (R, A, V).
Then by Lemma 4 .4 . 1 F(X, I) is a sublattice of F(X, R) . We display the
pointwise lifted S iat-algebra F(X, I) as follows:

Algebra F(X, I)

Import I

Carriers Fpf , [0, l])

Operations A : F(X, [0 , l])2 —
V : F(X, [0 , l])2 —

>F(X, { 0 , 1])
F[X, [0,1])

Definitions (f A g)(x) = f {x) A g(x)
i f V g)(x) = f (x) V g(x)

4.5 A pplications to CVG
We show how the results of this chapter can be applied to Constructive Volume
Geometry.

Recall the equational laws of scalars in S which we listed in Chapter 2 ,
Section 2.2.1.

Applying the Equational Validation Theorem 4.3.1 to the laws for opera­
tions on S we immediately have identical equational laws for the set F(X, S),
for any set X. Consider the law

si + max(s2, s3) = max(si -I- s2, Si + s3)

on scalars si, s2, s 3 G S. Then for scalar fields </>i, 0 2 ,0 3 € F (X : S) we have for
all x E X

(0i + M a x i f c , 03))M = 0 i (x) + max(02(a:), 03(rc))
= max(0i(x) 4- 02(z), M x) + 03^))
= (Afax(0i + 02, 0i + 03)) (x).

The other laws listed in Table 2.1 follow immediately as a result of the Validity
Theorem 4.3.1.

4.5 Applications to CVG 74

4.5.1 CSG Embedded in CVG
With our algebraic notation and results thus far, we are able to show an ex­
ample of how CVG can represent other models of computer graphics currently
in use.

Constructive Solid Geometry is one such example, and we have already
introduced this model in Chapter 2. We show that there exists an injective
homomorphism (Recall Definition 3.9.1 in the Preliminaries) e : A csg —* A qvg
which shows that CSG can be embedded in CVG. We prove

T heorem 4.5.1 The Constructive Solid Geometry (CSG) based on union U,
intersection fl and difference — is isomorphic to the corresponding Boolean
Opacity-Only Model of CVG based on [y], [n]and Q. That is, we can define an
bijective homomorphism e : Acsg Aqvg-

P r o o f Let B = {0,1}. A mapping e : £?(E3) —* F (E 3,B) is defined by

e(A) = <f)A

where (f>A € F (E 3, B) is a spatial object such that

for every z € E 3.
That is, e takes a CSG object defined by a subset A C E 3 and maps it to

a CVG object which at every point z inside A the data is set to 1 and every
other point outside A is 0, thereby specifying the geometry of the object in the
CVG Boolean Opacity-Only Model.

We show that e is injective. Let A, B C E 3.

We show e is surjective. Let in F (E 3, B) be given. Then define A = {z 6
E 3 | <f){z) = 1 }, and thus e(A) = </>.

We now show that the mapping e has the homomorphism properties

e (A) ^ e (B) => (3z e E 3)(e(A)(z) ^ e(B)(z))
<=> (3z € E 3)(z € A* » z e B)
=> A ^ B

e(A U B) = e{A)m (B)
e (A n B) = e(A)[H]eCB)
e (A - B) = e(A)Be(S).

To show this, we inspect the following tru th tables:

4.6 Notes and Sources 75

4>a {z) M z) (/>aub{z)
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

e(A U 5) = €(A)\U}e(B)

<t>A (z) M z) <t>AoB(z) (<!>/& b){z)
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

e(A fl B) = e (i4) [n] e (B)

M z) M z) <Pa- b {z) ((I>aB4>b)(z)
0 0 0 0
0 1 0 0
1 0 1 1
1 1 0 0

(/>a- b {z) = {4>a\E$b)(z)

Thus, by inspection of the tables, e is an isomorphism. ■

4.6 N otes and Sources
This study of the basic algebra of spatial objects F (X , A) seems to be new and
is joint work with my supervisor. It was also briefly discussed in [43]. Although
not difficult it is essential in laying a foundation for what follows.

The basic idea is to model algebraically spatial objects as an abstract data
type. If this is done well - as I believe it is - then we can use the theory
of abstract data types to study specifications and compare representations.
Furthermore we can use the theory of programming over abstract data types
to model high level programs over spatial object data types. This, of course,
is a critical issue for the development of Constructive Volume Geometry.

Chapter 5

Spatial Objects Over D iscrete
Space

5.1 Introduction
We have defined spatial objects

(f>: X A

and some operations on spatial objects for any set X and any algebra A. In
this chapter we consider the case where X is a discrete space such as

N, N*, {0, l} fc, Z, Z*

which, for example, represent memories and grids. (Examples 4.2.4 and 4.2.2).
The discrete case is of great importance for computing and so we develop

some theory especially for spatial objects over discrete spaces.
When X is infinite the space F (X , A) of all spatial objects is uncountable

and complicated. The theme of this chapter is to look at finite approximations
based on restricting the spatial object to some finite subspace Xf in C X and
consider how

0 • Xf in ► A
approximates

0 : X - * A.
This idea of a finite approximation is captured by the basic open sets of a
topology on F(X,A) .

Actually, this approach is generalised in the next chapter to the case of
continuous spaces X. So this chapter also serves to motivate and guide later
theory as well as yield insights to the main computational case.

In this chapter, we consider some topological properties of F (X ,A), when
A is a discrete space. We have already seen some examples of discrete spaces
in Chapter 4, namely the discrete grid of integers Z2, and memory address
space where Addr = N and Addr = {0, l} fc. Recall the general signature E:

76

5.1 Introduction 77

S ignatu re E

Sorts s

C o n stan ts . . . , c > s , . . .

O pera tio n s . . . , / : s x ••• x 5 —>5 , . . .

We define the E-algebra A as

A lgebra A

C arrie rs As

C on stan ts • • • j ca * A s , . . .

O pera tions . . . J A : A a x - - - x A a -+Asi . . .

and following Chapter 4, we pointwise lift the operations in A to make a E-
algebra F { X , A).

A lgebra F (X ,A)

C arrie rs F (X ,A)

C o n stan ts F (X ,A) , . . .

O pera tio n s . . . J f - .F (X ,A) x - . - x F (X , A) - -> F (X , A) , . . .

D efinitions CF{x) = CA, . . .
}F(<t>i, <j>n)(x) = J a (M x), ■ ■ j 4*n (*̂)) j ■ • •

Some fundamental topological properties of F (X , A) axe discussed in Sec­
tion 5.2: separation, compactness and density.

We show F (X , A) inherits the Hausdorff property from the topology on A,
and give necessary and sufficient conditions for a subset S C X to be compact

5.1 Introduction 78

(Theorems 5.2.1 and 6.4.4) Lastly, density properties of F (X ,A) are discussed
and Theorem 5.2.2 shows how the set Cae(X, A) of almost everywhere constant
functions are dense in F {X ,A).

Section 5.3 discusses the continuity of operators on F (X , A) when A is a
topological E-algebra and X is a discrete set. In particular, Theorem 5.3.3
shows that the pointwise lifted functions on F (X , A) are continuous with re­
spect to the topology on F (X ,A) . The evaluation and substitution functions
are defined, and are shown to be continuous (Theorems 5.3.1 and 5.3.2).

Section 5.4 is dedicated to an important example of discrete spaces. In
this section, we show how an unlimited register machine can be generalised to
compute arbitrary data on a discrete space X . The mathematical framework
developed in this chapter can be used to model a machine and be a useful tool
in the analysis of computations.

Recall Example 4.2.7 in Chapter 4 shows how spatial objects can be viewed
as a Cartesian product A x of the algebra A indexed by the space X . We
further extend this example to show topological relationships between A x and
F (X ,A) . We denote

A.x = : x E X }

to be the set of all functions 4>: X —► A x, such that <fi(x) E A x for each x E X .
The product topology was defined in Preliminaries Definition 3.8.15 where

the basic open sets of the product topology are of the form
n

Ux i x ••• x UXn x | x r i , . . . , xn} = 7rIi [UXi]
t=i

where n is finite, UXi is open in A Xi and x , x i , . . . , x n E X .
For the special case where A x — A for all x E X , we observe that the

Cartesian product A x = n i ^ : x e X } is the set of all functions (f) : X —> A,
such that <fi(x) E A for each x E X , and this is precisely the definition of
F (X ,A) .

Now, let Z = {rri,. . . ,x n} be a finite subset of the index set X . A typical
element B of the basis for the product topology is of the form

B = f \ { w - 1{UXi] : x i e Z }

= {(f) : 4>{xi) E UXi where Xi E Z , UXi open in A and 1 < i < n}.

The set B represents all functions (f> : X —► A mapping points in Z C X to
open sets Ux of A. For our work in this chapter we use the notation

B = {(f>: (f)(xi) E UXi where 1 < i < n}
B (x \ , . . . , xn, £/i,. • ., Ufi)

for the basic open sets of F { X , A), with X a discrete set.
Intuitively, one can interpret this set of functions as approximations of the

values of spatial objects - via Z7i,. . . , Un - on finitely many points x i , . . . , x n in
the space X .

5.2 Properties o f the Topology on F(X, A) 79

5.2 Properties of the Topology on F (X , A)

In this section, we discuss some topological properties possessed by F (X , A)
when X has the discrete topology and A is a topological E-algebra.

5.2.1 Separation
We start by proving a useful theorem showing how the separability of the
topological space Ta implies the separability property for the topology T of
F (X , A).

Recall that if a topological space Ta of A is Hausdorff, (i.e. Inseparable)
then for any two unique points x, y E A we can find two open sets U,V € Ta
such tha t x E U, y E V and these sets are disjoint; U fl V = 0.

T h eo rem 5.2.1 (Pointw ise L ifting o f th e H ausdo rff P ro p e r ty) IJTa is
a Hausdorff space, then so is T.

P roof Let / and g be two distinct functions in the space F (X , A). Then
there is a point x E X such that f (x) ^ g(x). Since A is Hausdorff, we can
find disjoint sets U,V E A such that

f (x) E U,g(x) e V ,

or equivalently,
/ E B (x ,U),g E B (x ,V) .

To see that B (x , U) fl B {x , V) = 0 suppose, for a contradiction, that there is a
function h E F (X , A) such that

h E B (x , U) H B(x, V) = B(x, U D V).

Then the point h(x) is mapped to the open set U fl V. But we chose U and
V such that U fl V = 0. Therefore B (x , U) fl B {x , V) = 0 implying T is
Hausdorff. ■

5.2.2 Density
In the context of the topology on F (X , A), we prove a theorem tha t shows that
a set D is dense in F (X ,A) . Thus for any function (j) E F (X , A), we can use
the functions in the set D to come within an arbitrary degree of precision of
(f). This property is essential if we wish to approximate functions using other
“simpler” , more convenient functions.

We start this section with an observation of what it means for a set to be
dense in F (X , A).

5.2 Properties o f the Topology on F(X, A) 80

O b servation 5.2.1 A set D is dense in F (X ,A) if, and only if, for any basic
open set

B = B {x i , , x n, U \ , , Un)
the intersection D fl B ^ 0.

To show that a set D is dense in F (X , A) we must exhibit, for any basic
open set B , that a function 4> can always be found such that </> G B fl D. To
this end, we define:

D efin ition 5.2.1 Let {x i , . . . , xn} be a subset of X and {y i , . . . , yn} a subset
of A s. Let a be an element of A s. A function (f)̂ a : X —> A s is said to be almost
everywhere constant if for a point x G X

i / x _ f Vi i f X G { x 1, . . . , x n},
’a' ' \ a otherwise.

Let Cae(X, A) be the set of all “almost everywhere constant” functions
mapping X to A. Each function in the set varies at only a finite number of
points {x i , . . . , xn} in X , and is a constant value at every other point. We
show that the set Cae is a dense set in F (X , A).

T h eo rem 5.2.2 The set Cae(X, A) is dense in F (X ,A) .

P roof We need to show that for any basic open set

B B{x i , . . . , xn, U\ , . . . , Un)

there is a function common in both sets; i.e. B H Cae(X, A) ^ 0.
For each point X* and each open set Ui in A choose a yi G U{. Then we

have a function 4>: X —> A that maps each point in {x i , . . . , x n}

(f>(x i) = 3/i,
(f>{x 2) = 2/2 ,

<f>(xn) = Vri-
The set B contains all functions mapping points to the open sets U\ , . . . , Un,

so the function (j> is contained in B as it maps points to elements in the specified
open sets.

The set Cae(X , A) contains all functions mapping a finite number of points
to elements of A. We choose the function in 0 G Cae{X, A) such that

<f>: (x i , . . . , x n) ■-+ (3/1 , . . . , yn)-

Thus given any basic open set B(x 1 , . . . , xn, U\ , . . . , Un) we may choose suit­
able elements { 3 / 1 , . . . , yn} in each open set {U \,. . . ,Un} respectively, and find
a function in Cae(X ,A) that maps 4>(xi) = yi for 1 < i < n. Therefore
Cae(X ,A) n B ^ < b . u

5.3 Continuous Operators o f F (X , A) 81

Corollary 5.2.1
Let X = N and, A = N both with the discrete topology. Then the set of all
almost everywhere constant functions Cae(X ,A) is dense in F (N, N).

PROOF The almost everywhere constant functions can be defined, for example,
as

Vi i f z G { z i , . . . , E n } ,
' ̂ \ c otherwise,

where c € N. The result follows immediately from Theorem 5.2.2. ■

5.3 Continuous Operators o f F (X , A)

This section provides some results on the continuity of the operators eval and
sub and shows that pointwise lifting preserves continuity. As with the rest of
this chapter, the set X is given the discrete topology where every subset of X
is an open set. The consequence of this is tha t each function in F (X , A) is
continuous, regardless of the topology given to A.

5.3.1 Continuity of Evaluation and Substitution
Recall the evaluation function eval : F (X , A) x X —> A was defined in Chapter
4 in Section 4.2.5 as

eval((f),x) = <f>(x),

which for a spatial object <fi and a point x in X , returns a data value in A. We
prove

Theorem 5.3.1 (Continuity of Evaluation) The function
eval : F (X , A) x X —> A is continuous.

P roof We need to show that for an open set U of A the preimage eval~l \U]
is an open set in the product topology F (X ,A) x X .

Observe that eval~l \U] = { (/ ,x) \ f (x) € U} where / € F (X ,A) and x is
a point in X . We show the set

I J {B(x, U) x {rr}} (5.1)
xex

is equal to the set

{ (/,z) | f (x) e U}. (5.2)

5.1 C 5.2: For an element (/, x) of 5.1 where / € B (x , U) we have

eval(f,x) = f (x)
e u ,

5.3 Continuous Operators o f F (X , A) 82

and thus (/ , x) G eval~l \U].
5.2 C 5.1: For a typical element (<;, x) G emZ_ 1 [t/] we have that g(x) G U <=3>
g G B(x,U). Therefore (g,x) G B(x,U) x {x}. ■

T heorem 5.3.2 (C on tinu ity o f S u b s titu tio n)
The function sub : F (X , A) x X x A —> F(X , A) defined as

is continuous.

P r o o f We show tha t the preimage, sub^lB] is open for any basic open set

B B{X\) ••• 5 • • • j Uff)

in F (X ,A), where is an open set in A for 1 < i < n.

Consider the parameter X . There are two cases:

Case (i) We choose an Xi such that n G {a?i,. . . , x n}. Then for sub(f,Xi,a)
we must have a G Ui for x* giving the open set

(J B (x i ,X i - i . . . ,Xi+i,xn,Ui, U i- i , . . . , C/j+i, Un) x {xj} x Ui.

Case (ii) We choose an x such that x ^ x i , . . . , xn. In this case we need not
worry about which open set a is in. We have the open set

(J B (x 1, . . . , x n,U i , : . . ,U n) x {x} x A,
xex

which is an open set on the product topology F (X , A) x X x A. ■

5.3.2 Continuity of Pointwise Lifting
We specify the pointwise lifting of functions on F (X , A) and show that they
are continuous whenever X has the discrete topology and A is an arbitrary
topological E-algebra. Recall the pointwise extension fF(x,A) of a function / a
is defined at a point x in X by

fF{X,A)(<t>U • • • ,<t>n){x) = f A(M x)) • • • >0n(z))

where (f>\,. . ., 4>n are functions in F (X , A).
We wish to show that the pointwise lifting of functions in the E-algebra A

preserves continuity. We start by proving a lemma which shows the composi­
tion of continuous functions is continuous.

5.3 Continuous Operators of F (X , A) 83

L em m a 5.3.1 Let f : A n —► A and g : X —► A n be continuous functions.
Then the composition (f o g) : X —> A is continuous.

P r o o f Denote the composition h = { fo g) . Given an open set U C A we
must exhibit the preimage h- 1 [C/] is open in X . We have

h-'iu] = (f o g y ' l U]
= g - ' i f - ' m -

By the continuity of / , we know that V = / -1 [£/] is an open set in An. Fur­
thermore, by the continuity of g , the preimage <?- 1 [V] is open in X , and thus
the composition (/ o g) is continuous. ■

We wish to prove that the pointwise lifting of the E-algebra A to F { X , A)
preserves continuity. To this end we prove

L em m a 5.3.2 F (X ,A)n is homeomorphic to F (X ,A n).

P r o o f Define the function $: F { X , A)n —> F { X , A n) by

(f>n)(x) = (0 i (z) , . . . , 0 n(x))

for functions 0 i , . . . , 0n in F(X , A) and x G X . We show $ is a bicontinuous
bijection.

B ijec tiv ity : Let { fa , . . . , 0n) and {$[,. . . , fan) be elements of F { X , A)n and
suppose we have {fa,.. fa) ^ { fa , . . . , fan). Then there is at least one
x E X such that

{fa(a;),. . . , fa{:r)) ^ {fa{x), • • •, 0 n W)

since there is one or more coordinate functions tha t are not equal at x.
By definition of the mapping $ we have

=S> $ (0 1 , . . . , 0 „)(x) j i $ (0 i , . . . , 0 (,)(x)
= S. $ (0 1 , . . . , 0 „) ^ $ (0 ' „ . . . , 0 ;) .

To show surjectivity, pick a / 6 F { X ,A n). It will have the form

f{x) = (a i , . . . , an)

for elements a i , . . . ,an G A and a point x G X . But for each a* we can
find a function fa G F { X , A) such that a* = 0(a:) for x £ X . Then setting

= (fa , . . . , 0 n) we have

= /W -

5.3 Continuous Operators of F (X , A) 84

Bicontinuity: To show that is a continuous mapping, let an open set B
of F(X , A n) be given. It will have the form

B B {x \ , . . . , x n, Vj, . •., Vn)

where each Vi = U{ x • • • x 1 < i < n is the product of open sets C/j
in A for 1 < j < n. Thus each Vi is open in the product topology on A n.
Now by the definition of the function <f>, we simply have the preimage
<3>-1 [£] mapping B to the set B 1 x • • • x B n where

B % = B (x l , . . . , x n, U \ , . . . ,U in), 1 < i < n.

Clearly each set B l is open in F(X , A), and thus B 1 x • • • x B n is open
in the product topology of F (X ,A)n, completing the proof.

Conversely, let B be an open set of F (X , A)n where B = B 1 x • • • x B n
such that

B % = B (x 1, . . . , x n,U[,--- ,[/*), 1 < i < n

for open sets t/j in A, 1 < j < n.

Now by the definition of $, we have

^ [B 1 x ••• x B n] = B (x i , . . . , x n,V ii . . . , V n)

where each Vi = U \x • •• x [/ * l < i < n i s open in A n. That is, Vi is the
product of open sets Uj in A for 1 < j < n.
Thus B (x i , . . . , xn, Vi, . . . , Vn) is an open set of F (X , A n), completing the
proof. ■

The next Theorem is an easy consequence of Lemmas 5.3.1 and 5.3.2.

Theorem 5.3.3 (Continuity o f Pointwise Lifting)
The pointwise lifting

I f { X , A) (01) • • • 1 0n) (^) = / a (0l (^) j • • • 1 f i n i x))

of a continuous function f a is continuous for <f>i, . . . , in F (X , A), x 6 X .

P r o o f We can express the pointwise lifting as

f F (X tA)(<f> 1» • • • ’ = U a O §((f> 1 , • • • , (f>n) (x))

= / A (0 l W , - - . , 0 n W) .

That is, pointwise lifting is equal to the composition of functions f a and <E>.
Now by assumption f a is continuous and Lemma 5.3.2 proves the continuity
of 4>. Therefore by Lemma 5.3.1 we have the result. ■

5.4 Modelling Abstract Memories and Machines 85

Alternatively, we can lift operations on space to spatial objects. We show
that such liftings are also continuous.

T heo rem 5.3.4 (C on tin u ity o f S patia l Po in tw ise L ifting) Let a : X —>
X be a continuous spatial transformation and a : F (X , A) —> F (X , A) the
pointwise lifting defined at a point x in X as

a{(f>)(x) = <f>(a(x))

for continuous 0 6 F (X ,A) . Then a is continuous.

P roof We show a maps open sets to open sets. Let U be an open set of A.
Then by the continuity of 0

V = r 1[U]
is an open set in X . By the continuity of a

W = a~1[U]

is an open set in X . Thus a is continuous. ■

We shall study both the pointwise lifting of spatial and data operations in
greater generality in Chapter 6 .

5.4 M odelling A bstract M em ories and M achines
This section shows how abstract machines can be modelled and analysed using
the general theory of spatial objects. The machines we model will have an
infinite amount of registers which act as the memory for which the data we
perform our computations on is stored. Memory then, can be thought of as a
spatial object from a discrete set of registers to a set of data:

memory : Registers —> Data ,

where each register contains a single element of data.
This abstract machine is a generalisation of an Unlimited Register Machine

such as the model found in [23]. We refer to our machine as a Spatially Extended
Register Machine or SERM.

We give a detailed account of program syntax and semantics, and show
how the SERM can be used to compute functions on a E-algebra. The Local
Computation Theorem 5.4.1 is proved in Section 5.4.5 which is a result showing
the output data computed by the SERM machine is found in a subalgebra gen­
erated by the user input. Using the algebraic methods introduced in Chapter
4, we show how a SERM can be pointwise lifted to compute in parallel over a
discrete space X .

5.4 Modelling Abstract Memories and Machines 86

5.4.1 The SERM Computational M odel
The SERM shall execute programs based on a signature E, which gives the
names of operations and tests that a SERM may perform in the course of a
computation. The register space that the SERM uses to store data will be a
discrete space R , consisting of registers indexed by the natural numbers.. Each
register contains exactly one data value from a E-algebra A.

The E-algebra A contains carriers, constants and functions. The carriers
are an arbitrary data set As and the set {t, f} of Booleans. The constant ca is
a typical constant of type Aa, and t, f are constants of type B. The function
f A is a typical function whose input is a tuple of Aa and has an output type of
Aa. The relation w is a relation on As whose output is either t or f. The two
sorted signature E and an associated E-algebra A is listed below.

S ignatu re E

Sorts s, Bool

C o n stan ts c —> s
true , false - Bool

O pera tions • x s —► s , . . .
. . . , w : s x • • x s —* Bool, . . .

Algebra A

Carriers Aa,®

C onstants . . . , cA —> A s, ..
t , f —> B

O perations . . . J a ' A s x - ' X Ag ► Ag) . . .

Co X • X Ag —* B, . . .

5 .4 .1.1 The Syntax of SERM Program s

The contents of the registers in R are transformed by the use of programs, and
we start a computation on the SERM by executing a program.

5.4 Modelling Abstract Memories and Machines 87

A typical SERM program makes use of registers in R which axe specified
by means of a register declaration D (cf. [59](p.41)). This declaration contains
three finite lists, consisting of registers in R , specifying

1. / , the registers containing user input data,

2. O, the registers where the output data will be located when execution
has successfully terminated, and

3. S some auxiliary storage registers.

We denote the declaration body of a SERM program as

D = (I ,0 ,S)

and specify that each listing in D are pairwise disjoint. A SERM program
may only modify the registers specified in the declaration body, otherwise it is
unmodified throughout the execution of the program. Thus we have

D efin ition 5.4.1 (SE R M P rogram s)
A SERM program P contains a declaration body D = (I, O, S) and a finite list
of instructions indexed by the natural numbers such that

P = (D - l : I u . . . , l : I l).

In this definition, P is a SERM program with I instructions, which we call
the length of P. The set of all SERM programs that use E is denoted as

SERM(E).

The SERM maintains a natural number called the program counter. It is
the task of the program counter to store the index of the instruction that is
to be executed next, and this value shall be updated after every instruction
has finished its execution. When the last instruction in the program list is
executed, the SERM computation is complete and the program counter is set
to zero.

There axe foux types of instxuctions in the SERM instruction set. They are
listed below with an informal description of their semantics.

5.4 Modelling Abstract Memories and Machines 88

r := c The value at register r is set to ca-

n := r2 Copies the value in register r2 to
register leaving r2 unaltered.

'""eII The n-ary operation / is performed on
n registers r x, . . . , rn and the result
stored in the register r.
No other registers are modified.

Jumpw(r i , . . . , r n,q) If the relation w (r i , . . . , rn) is true then
jump to instruction g, otherwise
continue program execution.

For each constant c in the signature E, we define an instruction r := c such
that the register r is specified, and when executed, the value ca is stored in r.

The transfer function r\ := r2 simply copies the value in register r2 to
register ri, with r2 unmodified.

For each operation
/ : s x • • • x 5 —> 5

where / is an n-ary operation in E, we define an instruction r := f(r \ , . . . , rn)
such that n registers are specified and when executed, the operation f a is
performed on the input values stored in r x, . . . , rn and the resulting value is
stored in r. No other registers are modified.

The Jumpw instruction is given n input registers n , . . . , rn and an instruc­
tion label q > 1 such that, if an associated relation w holds, then the program
counter is set to q to indicate the g-th instruction is the next instruction to
be executed. If the relation does not hold, execution continues to the next
instruction in the program listing.

For example, we could have the equality relation w(ri,r2) that returns true
if ri = r2, and false otherwise. Thus, the instruction Jumpw(ri,r2,q) would
cause a jump to occur only if the specified register contents were equal.

The Jumpw instruction may also cause a computation to finish. If a Jumpw
causes the SERM to execute the g-th instruction with q > I then the SERM
stops computation and the program counter is set to zero since this instruction
does not exist.

5.4.2 States
In order to fully understand what happens when our machine is executing a
program, it is necessary to describe precisely the state of the SERM. This

5.4 Modelling Abstract Memories and Machines 89

means keeping track of the next instruction to be executed and the current
contents of the registers. This allows us to have complete access to information
about the SERM at any instance of a particular computation.

The term state will be used to describe

1. the program counter c 6 N,

2. the value of all registers in the machine 7 : R —> A s,

Definition 5.4.2 A state a is a pair

(c , 7)

where c € N is the program counter; the label of the next instruction to execute,
and 7 : R —» A g is the configuration of the machine registers; a mapping from
the registers in R to their values in A s such that

7 [r] = the element a 6 A a in the register r.

The use of square brackets are to remind the reader that we are actually ac­
cessing a memory location. One could, for example, think of the registers as an
array. We can extend this notation to 7(7*1,..., rm] which returns the m-tuple
(a i , . . . , am) where at is the element stored in the register 7**, for 1 < i < m.

To access the program counter c of the state a = (c, 7) we write apc and to
access the memory configuration 7 we write am where m stands for memory.
To summarise

(c, l) m = 7 and (c, i) pc = c.
The collection of all computational states a is denoted as State (A) and

the collection of all machine configurations is denoted Config (A). Since each
configuration is a map 7 : R —> A s, the set of configurations is equal to the
collection of functions F(R, A) = {7 : R —> A3}. We use this set in the algebra
of states:

S ignatu re State

Im p o rt E

Sorts C onfig , N, State

O perations pc : State —► N
m : State —> Config

5.4 Modelling Abstract Memories and Machines 90

A lgebra State

Im p o rt A

C arrie rs Config(A), N, State(A)

O pera tions pc : State(A) -»■ N
m : State(A) --*• Config (A)

D efinitions

jT
jT

3
S

II
II

5.4.2.1 Special States

In this section we consider the state of the SERM before computation of a
program begins, and the state once computation has been finished.

Before we start a computation, we must ensure that the values of the SERM
registers are correctly initialised. This includes setting registers to the given
input values, and all others set to some default value. We give some definitions
starting with ground states.

Definition 5.4.3 (Ground State) A ground state is a state a = (c, 7) in
which each register in the memory configuration 7 : R —+ A a contains the
constant value ca in A a.

Once the SERM is in a ground state, we put the input data into the registers
specified by the program declaration. Such states axe called initialised states.
Definition 5.4.4 (Initialised State) An initialised state is a ground state
initialised with respect to a program declaration D where elements a\ , . . . , an in
A a are stored in the registers specified by the input list I.

Often times we write cr(ai,. . . , an) to mean that the ground state a has been
initialised with the data f l i , . , . , an e A s with respect to a program declaxation
D, specifying the n input registers the data will be stored in.

When the SERM has finished its computation, it enters a halt state. We
define such a state as follows:
Definition 5.4.5 (Halt State) A halt state o is any state (0 , 7) whose pro­
gram counter is 0 .

There are exactly two ways a SERM can enter a halt state:
1. when the last instruction in a SERM program is executed, or

2. when a jump is made to a non-existent instruction number.

5.4 Modelling Abstract Memories and Machines 91

5.4.3 A Programming Example
We give an example of a SERM program using the algebra of natural numbers.
Below is a listing of the signature Enat and a Enat-algebra in compact form.

Snat = (nat, Bool; zero, true , fa lse ; succ, pred , equal)
A = (N, B; 0, / / ; z + l , x - 1 ,=)

The instructions unique to the algebra of natural numbers and Booleans are

r := zero,
r := succ(r),r := pred(r),
b := true , b := false,
b := (n = r2).

In this example we compute a program over the natural numbers such that
when given two numbers ai, a2, calculates the sum a i+ a2 and outputs the result
in register z\. Intermediate calculations are stored in the auxiliary registers r\
and r2.

P ro g ram : Padd
U ser D ata : (a i,a2)
D. I = x i , x 2] 0 — z\\ S = r i , r 2

1 . X\ \= ai
2. x 2 := a2
3. ri := a?!
4. r 2 := x 2
5. Jump=(r2,zero, 9)
6. ri := 5ucc(ri)
7. r 2 := pred(r2)
8 . Jum p= (ri,ri, 5)
9. zi \= ri

5.4.4 Operational Semantics
States record the status of the program counter and the register configuration
of the SERM at every step of the computation of a program. We need to define
in a precise way how each instruction of a program alters the computational
state of the SERM. Specifically,

• how does the computation modify the registers in R,

• how does the program counter change,

5.4 Modelling Abstract Memories and Machines 92

• what happens when the computation is terminated.

To answer these questions, we must define how each instruction modifies
the computational state. For this we consider the substitution function

sub : R x As x Config (A) —> Config (.A)

which copies a value a G As to a register r in R. The sub function is defined
as

5«6(r,a>7)(r1) = | “ [ri]

For brevity we shall write 7[a\r] to mean sub(r,a, 7). The sub function
will be used to define the semantics of SERM instructions on states over the
E-algebra A.

Since the input and output are lists of registers in R, we may also use the
sub function to modify these registers as well.

We use the term step to mean the computation of executing a single pro­
gram instruction. Initially we discuss the execution of a single instruction, then
a function is defined to execute many steps sequentially, with the purpose of
executing an entire SERM program. Define the function

step : SERM(E) x State(A) —» State(A)

such that a given program P € SERM(E) and a state o = (c, 7), a state
step(P, a) is returned which is the resulting state after the execution of the
c-th program instruction as specified by the program counter. If step is given
a halt state a = (0,7) aa the beginning state, then the function simply returns
a unmodified.
There are four instructions to consider when defining the function step, and
we consider each case:

(c H-1,7[c^\r]) Ic = r : = c ,
(c+l,7[7[y]\r]) Ic = r : = y ,
(c+ 1,
7 [W 7 [ri], • • • ,7W) \2/] h = V := f (ru . . . , rn),

(g, 7) Ic = jumpw(r1, . . . , rn,q),
and tufyi,. . . , rn) = true,

(c+1,7) h = jumpw(r i,...,rn,q),
and w(ri, . . . , rn) = false,

Having defined the step function that computes a single step in a SERM
computation and returns the resulting state, we would like to compute many
steps in succession such that an entire program may be completely executed
and a halt state returned. To this end we define

step(P, cr) = <

5.4 Modelling Abstract Memories and Machines 93

D efin ition 5.4.6 (T he com p Function) Define the function

comp : SERM(E) x N x State(A) —*• State(yl)

recursively as

comp (P, 0 ,cr) = o
comp (P, k + 1, cr) = step (P, comp (P, <j))

which returns the resulting state after the completion of n computational steps
as listed in the program P, beginning at the state a.

5.4.5 The Local Computation Theorem
We prove a result which is useful in the analysis of the output of SERM pro­
grams. The Local Computation Theorem 5.4.1 shows that the output values
of a SERM(E) program P must lie within the subalgebra generated by the
application of the E-operations on the input data values.

Recalling the definition of generated subalgebra from Preliminaries Section
3.2.2, we give a result which considers the state of the SERM after a single
program instruction is executed:

L em m a 5.4.1 (O ne S tep L em m a) Let P be a SERM(E) program, a i , . . . , an
data in A s and a = (c, 7) a computation state. I f for any register r 6 R,
ffmH € (a i , . . . , a n)A then

step{P,o)m[r] e (ai , .. . ,an)A.

P r o o f For brevity let 7' = step(P, cr)m and pick a r £ R. Now consider the
following cases:
Case 1: Ic = 77 := c

step(P,<r)m[r] = 7 [c^\rJ[r] = <

C ase 2 : Ic = 7 7 := r 2

step(P, <j)m[r] = 7 [7 N V i]M =

cA if r = 7 7 ,
7 [r] otherwise.

7 [r2] if r = 7 7 ,
7 [r] otherwise.

C ase 3: Ic = r0 := f (r u . . . , r n)

step(P, cr)m[r] = 7[/a(7[^i]* • • • , 7 N) \ r 0][r]

f /A(7 [n] , . . . , 7 [^n]) if r = r0,
1 7 [r] otherwise.

5.4 Modelling Abstract Memories and Machines 94

C ase 4: Ic = Jumpw(n , . . . , rn, g)

step(P, a) = (g, 7) if iu(ri , . . . , r„) = true, and
step(P, cr) = (c + 1 , 7) if iy(r i , . . . , r n) = false.

By inspection of each case, we conclude that any one step computed on the
state <7 with the assumption that for any register r G R om[r] G (ui , . . . , an)A
results in a, state such that

step(P, cr(ai,. . . , an))m[r] G (a i , . . . , an)A. u

We now prove that the comp function returns a state configuration with
data that is also in the subalgebra generated by (a i , . . . , an)A.

T h eo rem 5.4.1 (T he Local C o m p u ta tio n T heo rem)
Let P be a SERM(E) program with declaration D and a i , . . . , an G A a are input
values in A s. I f cr (a 1 , . . . , an) = (c, 7) is an initialised state then for n steps of
computation

comp(P, 71, cr(ai,. . . , an))m[r\ G {au . . . , a n)A

for any register r G R.

P r o o f Pick a register r G R. We consider two cases based on whether or not
our selected register is listed in the program declaration D.
Case 1: The register r is not a declared register. That is, r G R \D . Therefore,
r will never be modified during computation of P. Now since the state (c, 7)
is initialised to the default value of cA G A 3, we have 7 [7"] = cA and thus
comp(P, 71, a(au . . . , on))m[r] G (a i , . . . , an)A.
Case 2: The register r is a declared register. That is, r G D. We prove the
result by induction on the number of steps of computation.
B ase Case: Let n = 0. We have com p(P,0 ,cr(ai,. . . , an))m equal to the
register configuration 7 we started with, and the result holds.
Inductive A ssum ption : Assume the result holds for k. That is,

comp(P, k, a(au . . . , an))mH € (0 1 , . . . , an)A.

In ductive S tep: For k + 1 we have by Definition 5.4.6

comp(P, k + 1, cr(ai, . . . , an)) = step(P, comp(P, k, cr(au . . . , an))),

then by the inductive assumption, comp(P, k , cr(ai, . . . , an))m[r] is in (a i , . . . , an)A
and by the One Step Lemma 5.4.1 step(P,comp(P, fc, cr(ai, . . . , an)))m[r] is in
(a i , . . . , an),4 - Thus we conclude comp(P, ti, cr)m[r] G (a i , . . . , an),4 .

By inspection of both cases

comp(P, n, cr)m[r\ G (a i , . . . , an)^

5.4 Modelling Abstract Memories and Machines 95

5.4.6 Input/O utput Semantics
In this section we analyse the properties of the state of the SERM after a
computation has been completed and a halt state returned. During such a
computation, a finite series of states

0 o, • • •»

is produced where cr0 is the initial state, and Oh = (0,7 ') is a halt state. To
find a minimal h such that ah = (0 , 7 '), we introduce the minimalisation (or
search) operator [23] (p.43) defined by

Definition 5.4.7 For any function f : N —> N

(the least h such that (i) f (k) is defined, all k < h and
fih(f(h) = 0) = < (ii) f (h) = 0 if such a h exists,

[undefined if there is no such h

We use / i a s a minimalisation operator to find a suitable h such tha t the given
condition is satisfied, in this case, the condition is when the function / returns
0. This number is the least h such that the values / (0) , . . . , f (h — 1) are all
defined with / (0) 7 ̂ 0 , . . . , f (h — 1) ^ 0 and f (h) = 0 .

Using the minimalisation operator, we define the length function that re­
turns the minimal number of steps needed to reach a halt state.

Definition 5.4.8 Let P be a SERM program, a state, and h G N. Then
length : SERM(E) x State(A) —> N is defined as

length(P, a) ~ (/i/i)[comp(P, h, a) = (0 , 7 ')]

if a minimal h exists, undefined otherwise.

We now define the run function which computes a SERM program in the
minimal amount of steps necessary.

Definition 5.4.9 (The run Function) Let P be a SERM(E) program and
a be a state. Let run : SERM(E) x State(A) —> State(A) be a function such
that

run(P, cr) ~ comp(P, length(P, a), a).

Since for some input pair (P, a) the final state may not exist, we use the
symbol ~ to denote equality if, and only if, both states are defined and equal.

Having defined the meaning of computing one step and several steps in
sequence, and proving tha t the computation must yield data values that exists
in the subalgebra generated by the input, we now prove a corollary to Theorem
5.4.1.

This result gives an important property of the data values produced by
a SERM computation. That is, any output of the SERM program must be
generated by the E-operations on the input. We have

5.4 Modelling Abstract Memories and Machines 96

C oro llary 5.4.1 (T he O u tp u t of run)
Let P be a SERM(E) program. Given an initialised state a(a \ , . . . , an) we have
run(P, a(ai , . . . , an))m[z] E (a\ , . . . , an)A for any output register z.

P r o o f Set k ~ length(P, cr(ai,. . . , an)). By Definition 5.4.9 we have

run(P, cr(ai,. . . , an)) ~ comp(P, k , a (a1?. . . , an)).

Thus by The Local Computation Theorem 5.4.1

run(P , cr(ai,. . . , an))m[z] E (au . . . ian). u

This result may be interpreted by saying tha t any output data we produce
as a result of a SERM computation must always be present in the subalgebra
generated by the input.

5.4.6.1 SERM C om pu tab le F unctions

We use the run function to define SERM computability of functions on the
E-algebra A.

D efin ition 5.4.10 (SE R M C o m p u tab le F unctions) A function f : A " —►
A™ is computable on A by a SERM program P if for all input a\ , . . . , an E A s

f{o i 5 • • • j Off) = run(P, <7 (^1 , • • • j Q"n))m\zi, • • • j ^m]

for the output registers Z i, . . . ,zm specified in the program declaration.
It is SERM computable if it is computable on A by some SERM program.

We have the immediate Corollary

C oro llary 5.4.2
Let f : A™ —> A™ be a SERM computable function over A. Then

f (®1 j • • • > Off) E (<Ti 5 • • •) Off) a

for input a\ , . . . , an in A!f.

P r o o f Since / is SERM computable, there exists a P E SERM(E) such
that f (a 1 , . . . , an) = run(P, <r(ai,. . . , an))> and by Corollary 5.4.1 we have the
result. ■

5.5 Parallel SERM 97

5.5 Parallel SERM
So far we have described a model of computation called a SERM machine.
We have introduced the notion of SERM programs and formally defined the
changes of the state of the machine whist a program is being executed. It is
useful to consider the SERM as an algebra by grouping the states, register
space and the computing operations step and comp as follows:

S ignatu re SERMe

Im p o rt E

Sorts R , SERM(E), State, nat

O pera tions step : SERM(E) x State —> State
comp : SERM(E) x State x nat —> State
run : SERM(E) x State —► State

A lgebra SERMa

Im p o rt A

C arrie rs R, SERM(E), State (A), N

O pera tions step : SERM(E) x State(A) —» State(A)
comp : SERM(E) x State(A) x N - + State(A)
run : SERM(E) x State(A) —> State(A)

Now given any discrete space X we can use the algebraic methods of point-
wise lifting (Chapter 4) to construct a SERM computing data at each point in
the space. Such SERM computations can be thought of as parallel computa­
tions across the space X .

5.5 Parallel SERM 98

A lgebra F (X , SERMA)

Im p o rt SERM A

C arrie rs F (X ,R) , F (X , SERM(E)),
F (X , State(A)), F (X , N)

O perations Step : F(X, SERM(E)) x F (X , State(A))
-> F(X , State(A))

Comp : F (X , SERM(E)) x F (X , State(A))
x F (X ,N) —* F (A , State(A))

D efinitions Step(P,a)(x) = step(P(x), cr(x))
Comp(P, cr, n)(x) = comp(P(x), a(x),n(x))
Run(P, cr)(x) = run(P(x), cr(a;))

Each of the carriers of the algebra SERM , 4 is pointwise lifted to the space
X . That is, for each point x G X there exists a machine with its own sepaxate
set of registers, state (program counter and register configuration), time (the
current step of the computation), and program. The operations step, comp and
run are then pointwise lifted so that given x in X we can compute a SERM
program on the data located at that point in space.

5.5.1 A Programming Example
Extending the example given in Section 5.4.3, we show how one can use the
parallel SERM to compute over data distributed in the space X . That is, for
each point x E l w e compute a program using the operations available to us
in the Enar algebra N of the natural numbers. Such a distribution of programs
has the form

P - .X - + SERM(Enat)

where P(x) is the SERM program that is to be run using the data at the point
x. The programs which we run are executed independently at each point in
space, and in general different points will have different programs running.

Now suppose we are given two spatial objects 0 i , 0 2 € F (X ,N) for which
we want to compute the sum 0 1 + 02. Such an addition operation on spatial
objects is simply lifted pointwise from addition on N as

(0 i + <b)(x) = (f>i(x) + 02 (a r) ,

for a point x € X . To compute this function, we will execute a parallel SERM
to add the natural numbers 0i(x) and 0 2 (x) for each point x in space. In this

5.6 Notes and Sources 99

case the distribution P is a constant function such that

P(x) = Padd for all x e X ,

where Padd is the following SERM program code:

Program: Padd
D. I = x u x 2; O = zi, S = 7~i,r2

1. x \ \ = a i

2 . x 2 : = a2
3. 7~i := x\
4. r2 := x2
5. Jump=(r2,zero,9)
6 . n := succiri)
7. r2 := pred(r2)
8 . Jump=(ri,ri,5)
9. zx := ri

Each point in the space X has its own SERM computational state, and
during the execution of Padd on a point in space this computational state is
changed. These states are distributed by a mapping

W : X —> State(N)

where o(x) = ox 6 State(N) is the computational state of the SERM comput­
ing over the data at the point x E X . A parallel SERM computation is begun
by running a program beginning at an initial state. We have

= ax{(i>i{x),<j)2(x))

meaning that for each x the input data will be (pi (x), (p2 (x) and they are copied
to the registers x \ , x 2 as specified by the program declaration of P 0 <w-

The final state at each point after the computation has terminated (if it
terminates) is

a'{x) = Run(P, </>2))(x)
^ ruu(PaM,ax{(pi{x),(i)2(x))).

That is, an individual SERM will execute, in parallel, the programs Padd on
each point in X . The resulting distribution o' of states contains at every point
x the sum (pi{x) + (f>2(x).

5.6 N otes and Sources
The topology of finite approximation used here is known in Classical Com­
putability Theory as Baire space topology on maps

5.6 Notes and Sources 100

and as Cantor space topology on maps

/ : N —► [0 , 1]

The development of the topology for general spatial objects over discrete
space F (X , A) and ideas of topological data types of these spatial objects seems
to be new and is my own work, based on suggestions of Professor Tucker.

The work on the case study of register machines is my own work based on
generalising the machine in Cutland [23] and using the methods of Tucker and
Zucker [59]. These methods are also found in [29].

Chapter 6

Spatial Objects Over
Continuous Space

6.1 Introduction
In this chapter we consider function spaces of continuous functions where X is
an arbitrary topology and A is a topological E-algebra, as defined in Definition
3.9.3 (Preliminaries Section 3.9.3).

We define the set

C(X, A) = {(j) | (j): X —> A is continuous and total}

and give some basic algebraic properties in Section 6.5.
This chapter begins the development of the topological framework that is

at the center of the general theory of spatial data types. Namely, we introduce
the compact-open topology. We have chosen this topology because of i t ’s well
understood properties and their useful application to our theory.

The primary goal of this chapter is to develop a “language” in which we
can use to compare two spatial objects, with the development of approximation
methods being our fundamental motivation. That is, we will use the compact-
open topology to describe the “nearness” of spatial objects.

The outline of the chapter is as follows. Section 6.3 defines the compact-
open topology on the set C (X : A). Here we give several examples motivated by
applications of spatial objects, particularly to Constructive Volume Geometry.
Section 6.4 defines two operations. The composition and evaluation operators
over the set of continuous spatial objects are defined and conditions are given
on C (X , A) to ensure their continuity.

Later, we consider the operation of substitution and show that continuity
for this operator is impossible (except in the case of the discrete topology).

In the particular instance of the compact-open topology on C(X, R) where
A = R, we show the continuity of the operations of addition, multiplication
and scalar multiplication of spatial objects.

6.2 Continuous Spatial Objects 102

6.2 Continuous Spatial O bjects
In this chapter we move towards a general theory in which we consider topo­
logical spaces on X . Immediately some useful examples come to mind:

Exam ple 6.2.1 (Euclidean Space) [26](p.64) Spatial objects
in Constructive Volume Geometry axe defined in Euclidean three dimensional
space and therefore have X = E 3. The notation E 3 is used to denote the set
R 3 = R x R x R equipped with the Euclidean metric. This metric is defined
by

\x\ = V V + x22 + x 32

at the point x = (xi,X2 ,xs) € X . Denoting the ball centered on the point x
and radius r > 0 as B (x ,r) = {y \ \x — y\ < r}, the basis for the topology on
X is

SB = {B (x , r) | x 6 X ,r > 0 }.

Exam ple 6.2.2 (The Standard Topology o f the Real N um bers)
Let X = R have the standard topology of the real numbers where a set U C R is
open if for each x G U we can find a r > 0 such tha t B (x , r) = {y | |rc — t/| < r}
is a ball around x and B (x , r) C U.

Exam ple 6.2.3 (D iscrete Space)
We have seen in the previous chapter where X has the discrete topology. That
is, each subset of X is an open set. Typical examples of sets with the discrete
topology axe N and Z.

Thus, with both X and A having topologies we are able to consider the set
of continuous spatial objects

C (X , A) = {(f) | 4>: X —> A is continuous and total}.

6.3 The Com pact-O pen Topology on C (X , A)

Let X and A be topological spaces and C(X, A) the set of all total continuous
functions mapping X to A. This section gives a detailed description of the
specification of the compact-open topology on the set C{X, A).

Let K be a subset of X and U a subset of A. We write

W (K , U)

to denote the set of all continuous functions <fi in C (X , A) tha t take the points
in K and map them to the points in U. In symbols we write this as

6.3 The Compact-Open Topology on C (X , A) 103

Now using this notation, consider the sets W (K ,U) such that K C X is
compact and U C A is open. Using these sets, we construct the compact-open
topology which we denote 28, on the set of total continuous functions C (X , A).

Proceeding as shown in [36] (p.221) we have the subbasis of the compact-
open topology consists of all subsets

where K C X is compact and U C A is open, and the basis 8 8 is defined as
the family

of sets defines the compact-open topology on C {X , A).

Throughout the text we refer to the compact-open topology (C (X , A), 88 s)
as just C(X, A), dropping the explicit indication of the collection of open sets
28 defining the topology.

We now turn to some examples illustrating the compact-open topology on
C{X, A) with various topologies on X and A.

Exam ple 6.3.1 Let X = R and A = R. Then we have the compact-open
topology on ^ (R , R) where a typical example of a subbasic set would be

where [—n, n], n > 0 is a closed (and compact) interval on R and V = (a, b) is
an open interval of R for a > 6 .

Exam ple 6.3.2 Let X = E 3 and A = R3, where E 3 is the topology induced
by the Euclidean metric (Example 6.2.1) and A is the product topology, with
open sets of the form V = U\ x C/ 2 x U3 for open sets Ui C R.
A typical example of a subbasic set for the compact-open topology on ^ (E 3, R3)
then would be

where [—n, n]3 is a closed “cube” of E 3, for n > 0 and V is some open set in
the product topology R3.

W {K, U)

Ki compact, Ui open

and then the family

W { [- n ,n f ,V)

Exam ple 6.3.3 (C V G T h e 4-C olour C hannel M odel) Let X be the Eu­
clidean space E 3 with the standard topology and A is the product topology

6.4 Properties o f the Compact-Open Topology 104

over the set [0,1] x R 3 whose values can be interpreted to represent opacity,
red, green and blue.

The open sets of A are of the form I x U\ x U2 x U$ for an open set I C [0,1]
and open sets U\, U2, t/ 3 C R.

An example of a subbasic set for the compact-open topology on E 3, [0,1] x
R3) would be

W([-n , n] 3,V)

where [—n ,n] 3 is a closed cube in E 3, n > 0 and V is a typical open set in the
product topology of A.

Exam ple 6.3.4 Let X = N be the discrete topology and A has any topology.
By the discreteness of X , every function </> : N —> A is continuous and so we
have ^ (N , A) = F(N, A).

6.4 General Properties of th e Com pact-O pen
Topology

It is convenient now to discuss some general properties of function spaces with
the compact-open topology. We look at two operators that will be used exten­
sively in our work: c o m p o s itio n and e v a lu a tio n .

Our exposition in this section follows closely to [26] (p.259) and we develop
a general theory by introducing machinery which allow us to consider these
operations on arbitrary topological spaces X , Y, Z. We also use the function
spaces of continuous functions C(X, T), C (Y , Z) and C{ X, Z) each with the
compact-open topology.

6.4.1 Composition
We define an operator which, given two functions from different function spaces
C(X, Y) and C(Y, Z) returns the composite function in C (X , Z). We show the
continuity of this operator when one function parameter is fixed, and give
conditions in which it is continuous in both functions. We define the property
of j o i n t c o n t in u i ty as

Definition 6.4.1 (Joint Continuity) [36](p .223) A to p o lo g y f o r C (X , Y) i s
s a id to be j o i n t l y c o n tin u o u s .if , a n d o n ly if, th e m a p P : C(X, Y) x X —> Y
d e fin e d f o r a f u n c t io n f E C(X, Y) a n d x E X b y

P { f , x) = f (x)

is continuous.

6.4 Properties o f the Compact-Open Topology 105

Y

Figure 6.1: Composition of functions

In a language suited more for our uses, joint continuity is in essence a statement
about the continuity of the evaluation of a function / in C (X , Y) at point

D efinition 6.4.2 (Com position) The composition operator comp : C(X, Y) x
C(Y , Z) —» C(X, Z) is defined as

com p(f, g) = go f

for functions f : X —* Y and g : Y —► Z.

We describe this definition pictorially in Figure 6 .1 .
An important question that we can ask about the compact-open topology

is what conditions are needed for operation comp to be continuous in both
variables. To this end, we recall from the Preliminaries Section 3.8.2 that each
point in a locally compact Hausdorff space has a relatively compact nbhd. That
is, the closure of this nbhd is compact. We state and prove an adaptation of
a theorem found in [26] (p.260), which gives the criteria for a function space to
be jointly continuous.

Theorem 6.4.1 [26](p.260 — 261) Let X and Z be Hausdorff and Y locally
compact. Then the map comp : C{ X, Y) x C(Y,Z) —> C (X , Z) is continuous.

P roof Given functions / in C (X , Y) and g in C (Y , Z), let W (K , U) be a
nbhd of (f o g), K compact, U open.

By continuity of g , g~l \U] is open and by the continuity of / , f[K] C g~l [U]
is compact.

By Theorem 1.4(1) of [26] (p.224) 1 the image f [K\ of compact K is compact
in Y. By the local compactness of Y there is a relatively compact open set
V C Y with f[K) C V C V C g~l [U], and so comp[W(K, V), W(V, U)} C
W(K,U) . m

1Theorem 1.4(1) states: The continuous image of a compact set is compact.

6.4 Properties o f the Compact-Open Topology 106

Com position W ith a Fixed Param eter

In many applications, we may not need such a strong composition result. Thus
we now prove a theorem which shows that comp is always continuous whenever
one of the parameters is fixed. This result is taken from [26] (p.259).

Theorem 6.4.2 (C om position of Functions) The operation comp is con­
tinuous when one of the parameters is fixed. Namely,

1. the function g o f 1 is continuous for fixed f \ and

2. the function pi o / is continuous for fixed p i.

P R O O F (1). We fix a function / i : X —> Y. Let W (K , U) be a subbasic set in
C{X,Z). We observe

go f \ € W(K, U) *=> g € W(fi[K], U).

Since f i : X —> Y is continuous, / i [K] is a compact set in Y , and so W (f i [K], U)
is an open set of C(Y , Z). Therefore

/ i x W(h{K\ , U) C C(X,Y) x C(Y,Z)

is open and comp[fi ,W(fi[K], U)] = W (K , JJ) which proves the continuity of
9 ° h -

(2). Let W (K , U) be a subbasic set in C (X , Z) We fix a function pi : Y —► Z
and note that

Si ° f e W{K,U) and / e W { K , g i l [U])

where g~l [U] is an open set in Y. Therefore

W(K, g ? [V \) x Sl c C (X , Y) x C(Y,Z)

is open, and so comp[W(K, g i l [U]),gi\ = W (K , U). Therefore pi o f is contin­
uous. ■

6.4.2 Evaluation
For any particular function in a function space C(X, Y) we will need to evaluate
the function / (E C (X , Y) at a point x in X. This is done by way of the operator

eval(f ,x) = f (x)

which given a function / and a point x G X returns the result / (x) in the set
Y. We have the definition

Definition 6.4.3 The operation eval : F (X , Y) x X —> Y is defined for a
function f € F (X , Y) and a point x € X by

eval(f, x) = f (x) .

6.4 Properties o f the Compact-Open Topology 107

We will adapt the operator comp in the previous section and use i t’s conti­
nuity result for a continuity proof of eval. In fact, we show tha t evaluation is
simply a special case of composition.

To this end, let {z} be the singleton set containing one point 2 of Z. Con­
sider the set

C (z , Y) = { f e C (Z , Y) \ f - ' [Y] C {z}}

of all functions tha t map the point 2 to data in Y.
The proof of the composition operator has given the conditions needed to

ensure the continuity of comp on both parameters. Now, to show the special
case of evaluation, consider the function j y ’ Y —» C (z , Y) tha t maps the
elements of Y to the functions in C(z, Y) such that j y(y) maps to a function
/ in C(z , Y) where f (z) = y. Recalling Definition 3.9.1 of a homeomorphism
in the Preliminaries Section 3.8, we show

Lemma 6.4.1 The function j y : Y —> C (z , Y) is a homeomorphism.

P roof This mapping is a homeomorphism between Y and C(z ,Y) . That is,
a bijective bicontinuous function. Let 2/1 >2/2 £ Y. To prove injectiveness

jY{y\)(z) = j Y {y2)(z) => [fi(z) = f 2{z)\

= > 2/1 = 2/ 2 -

For surjectivity simply note that for all / G C(z, Y) we can choose the value
y = f (z) and then we have jy(y) = / , and so Ran(jY) = C(z , Y).

For the continuity of j y note for open set U C Y tha t j y X\W(z, U)] = U
by the definition of j y , and for the continuity of j Y 1 note that for open set
7 C 7 : j Y [V] = W(z ,V) . ■

We define a similar map j x : X —► C(z, X) where j x (z) maps to a function
/ in C(z, X) such that f (z) = x. This function is also a homeomorphism and
the proof is identical to the one for Lemma 6.4.1.

C (X , Y) x

id

C (X , Y) x

X eval Y

JX

C(z , X) comp

3Y

C(z , Y)

Figure 6 .2 : Commutative Diagram For Evaluation

Finally, we are able to prove a result which gives the necessary conditions
for the continuity of the evaluation function on the compact-open topology:

6.4 Properties o f the Compact-Open Topology 108

Theorem 6.4.3 If Y is locally compact then the evaluation map

eval : C (X , Y) x X - + Y

is continuous.

P r o o f Consider the special case of composition

comp : C(X, Y) x C(z, X) -> C(z, Y). (6.1)

By Theorem 6.4.1, this function is continuous since X is locally compact.
By Lemma 6.4.1 we have the homeomorphisms X = C{z , X) and Y = C(z, Y).
Thus we can rewrite (6.1) as comp : C (X , Y) x X —» Y. But this is just the
definition of the evaluation function, hence the result. ■

We illustrate this theorem with an example.

Example 6.4.1 Suppose X = N has the discrete topology and A = R has the
standard topology on the real numbers. The evaluation function will be

[-] :C(N,R) x N —> R

where
f\i\ = r

for / G C (X y A), i G N and a number r G R.

This example can be thought of as a “read” operation on arrays of real
numbers; where the arrays are modelled by the function / : N —> R, and
indexed by the set of natural numbers.

6.4.3 Covariant and Contravariant Operations
We have already seen many examples of operations that transform data and op­
erations that transform space. We prove two lemmas tha t show the continuity
of such operations when lifted pointwise.

Lemma 6.4.2 (Continuity of Covariant O perations) Let a : Y —> Z be
a continuous mapping and define a : C(X, Y) —> C(X, Z) pointwise at x G X
by

a((f))(x) = a(<f>(x))

for the continuous function (f> G C (X, Y) . Then a is continuous.

P r o o f We have the equality

a (0) = a o (f).

Applying Theorem 6.4 .2(2) yields the result.

6.4 Properties o f the Compact-Open Topology 109

Lemma 6.4.3 (C ontinuity of Contravariant Operations)
Let (3 : X —► Y be a continuous function and define ft : C { X, Z) —> C(Y,Z)
pointwise at x G X by

]3(<p)(x) = <t>{(3{x)),
for continuous 0 G C(Y,Z) . Then (3 is continuous.

P roof By the definition, {3 is simply the composition

to which we simply apply Theorem 6.4 .2 (2). ■

6.4.4 The Discrete Topology on X

6.4.4.1 C om pactness

In this section we prove a result that gives necessary and sufficient conditions
for the compactness of a discrete topology on X .

T heorem 6.4.4 Let the set X have the discrete topology, and A has some
topology Ta ■ Then

(i) all maps X —» A are continuous, and

(ii) S C X is compact if, and only if, S is finite.

P r o o f (i) Let / be a function in F (X , A) and let U be any open set of T^.
Since X has the discrete topology every subset of X is an open set. Thus each
preimage f ~ l \U\ of the open set U is an open set in X , hence / is continuous.

(ii) =>> Let Xi, . . . , Xi, . . . be all the elements of the set S. Consider the
collection

C = {{:ri} | Xi G S}.
The collection C is an open cover since each {re*} is an open set and clearly
each point Xi G S is contained in one open set in C. By the compact property
of S there exists a finite subcover

C0 = {{a*},...,!®*}}

of C which covers S. Hence each element of S is contained in Cq so S is finite.
4= Assume that S is finite. We must show tha t each open cover of S has a

finite subcover. Let
C = {Uu -. . ,Ui , . . . }

be a typical open subcover of S. Then for each element Xi G S, choose a Ui G C
such that Xi € Ui. We construct the collection

C0 = {Uu . . . , Uk}

where each Xi is covered. Since there axe finitely many Xi, we need only a finite
number of Ui, yielding a finite subcover. ■

6.5 The Topological Algebra o f C(X, A) 110

T heorem 6.4.5 Let X be a discrete space. The space A is compact if, and
only if, F (X , A) is compact.

We note that Theorem 6.4.5 is actually a special case of a more general
theorem. We state Tychonoff’s Theorem as

T heorem 6.4.6 [26](p.224J Let {Ai \ i E 1} be any family of spaces. Then
the product

n *
iei

is compact if, and only if, each Ai is compact.

By our remarks in Example 4.2.7 of Chapter 4, when X is discrete, F (X , A) ~
Ax . Hence by Tychonoff’s Theorem, Theorem 6.4.5 is immediately true.

6.5 The Topological A lgebra of C (X , A)

In this section we consider the case where X has a topology and A is a topo­
logical E-algebra. Recall Definition 3.9.3 in Section 3.9.3 of the Preliminaries.
We reproduce the definition here

D efinition 6.5.1 (Topological E -A lgebras)
A topological Y-algebra is a E -algebra with topologies on the carriers such that
each of the basic E -operations is continuous.

A natural question to ask is whether or not the pointwise lifted operations
over C(X, A) is a topological E-algebra, with respect to the compact-open
topology. To this end, we prove

L em m a 6.5.1 C(X, A)n is homeomorphic to C { X , A n).

P r o o f To prove this result, we define the function 4 > : C(X, A)n —> C(X, An)
as

4>(0i,. . . , 0 „)(x) = (0 i (x) , . . . , 0 n(z)),
for (continuous) functions 0 i , . . . , 0n in C(X, A) and a point x in X . We must
show the function 4> is bicontinuous and bijective.
B icon tinu ity Let W(K, U\ x • • • x Un) be a basic open set of C(X, A n). Then
by the definition of we have

Ux x • • • x Un)\ = W (K , Ux) x • • • x W(K, Un),

open in C (X , A)n.
To prove continuity in the other direction, let W(K, U\) x • • • x W(K, Un)

be a basic open set of C(X, A)n. Then by definition

$\W (K , Ux) x • • • x W(K, Un)] = W { K , Ux x • • • x Un),

which is a basic open set in C(X, A n).
B ijec tiv ity is obvious from Lemma 5.3.2. ■

6.5 The Topological Algebra o f C(X, A) 111

T h eo rem 6.5.1 (Poin tw ise L ifting of Topological A lgebras)
Let X be a topological space, A a topological T,-algebra. The pointwise lifted
functions of A are continuous on the compact-open topology over C(X,A) .
That is, C (X , A) is a topological E -algebra.

P roof We list the E-algebra C(X, A) as follows

A lgebra C{X, A)

C arrie rs C{X, A)

C o n stan ts • • •, cc(x,A) ► C(X, A) , . . .

O p era tio n s • • •, fax ,A) : C(X, A) x . . . x C(X , A) - C (X , A) , . . .

D efin itions CC(X,A)(x) = Ca
fc(X,A)(.4>li • • • > 4>n)ip̂ ') • • • j ^ n ^))

We show that each operation is continuous with respect to the compact-open
topology on C(X, A). To this end, we observe tha t given a typical operation
fc(x,A) we can express the pointwise lifting at a: € A in terms of a composition

for input values < f > \ in C(X, A). But by the continuity of the function
$ in Lemma 6.5.1 and Theorem 6.4.2 gives us the result. ■

We immediately have a useful corollary for the case of the real numbers.
Let R be the topological E-algebra

A lgebra R

C arrie rs R

O p era tions T, • ! R x R —> R
- : R —> R

6.5 The Topological Algebra o f C(X, A) 112

where the carrier set R has the standard topology and let X have a topology.
We show the pointwise lifting of the operations on R to the set

C(X, R) = {4>\4>:X -+R}

forms a topological E-algebra, where all operations are continuous with respect
to the compact-open topology on C(X, R). We list the E-algebra as follows.

A lgebra C(X, R)

C arrie rs C(X, R)

O pera tions +, x : C (A ,R) x C(X, R) -> C (A ,R)
- : C(A, R) —> C(X, R)

D efinitions (f + g)(x) = f (x) + g(x)
(f x g)(x) = f (x) - g(x)
~ (/) W = ~ f (x)

Corollary 6.5.1 Let f and g be functions in C(X, R), and A G R. The alge­
braic operations of addition (f + g), multiplication (/ x g), and scalar multipli­
cation (A • /) pointwise lifted from R form a topological E -algebra on C(X, R)

P roof Immediate from Theorem 6.5.1. ■

Theorem 6.5.2 Let X be a topology and A a topological E -algebra. The E-
algebra C (X , A) is a E -subalgebra of F{X, A).

P roof Clearly C (X , A) is a subset of F(X , A). Now for each constant function
cF in F (X, A) we have cF(x) = Ca for all x E X by definition. But every
constant function is continuous and cc{x) = cF(x) = ca, thus cc is continuous.
Now choose any E-operation f F : F(X, A)n —> F (X , A) and any continuous
functions (f>i,. . . ,(f>n from the set C (X , >1). We want to show that f c is closed on
C(X, A); i.e. for any continuous input, the output is continuous. By definition

/ f W i i - - A) — fc(<t>l, • • • , 4>n)

for all a: £ X . But since A is a topological E-algebra, f A ' - A n ^ A i s
continuous. So for any input of continuous functions the operation f c returns
a continuous function, and therefore is closed on C(X, A). ■

6.5 The Topological Algebra o f C(X, A) 113

We will also discuss a substitution operator over the set which, when given
a point x G X , a datum a G A and a function / : X —> A. The operator
returns a new function f ' (x) = a which remains unchanged at every other
point. This operator is slightly more problematic than the others, for clearly
C(X, A) is not closed under substitution. That is, we can use this operator to
build non-continuous spatial objects.

6.5.1 Substitution
The substitution operator is an operation used to replace a single data value
of the spatial object (f>: X —> Y at a point in x in X . We define an operation
sub : C (X , Y) x X x Y ^ C (X , Y) by

for (f> G ^ (N , R), i G N and r G R.

This example can be viewed as an “update” operation for arrays of real
indexed by the natural numbers; and would be a generally useful operation
to use with our spatial objects. Some problems arise with its use however, as
illustrated in this next example.

E xam ple 6.5.2 Let X = [0,1] and A = R. Define the constant function
0 : [0,1] —> R such that 0 (a:) = 0 for all x in [0,1]. Clearly 0 is continuous and
in ^ ([0 ,1],R). Pick any xq G [0,1]. Then ifr = sub(0,x0,1) is a discontinuous
function.

This example shows that in general, the set C(X, A) is not closed under
the substitution operator. That is, discontinuous functions may be returned
as a result of substituting values in spatial objects.

R em ark 6.5.1 Is it possible to define a substitution operator in which C (X , A)
is closed under? That is to say, can we somehow ensure that the function
returned is always continuous.

The root of the problem is the modification of a single value. If we can
produce an operation that somehow changes a value, and then all local values
are “modified” to accommodate this value, then perhaps a suitable operation
can be defined. However we shall not explore this subject here, but consider it
as a question for further research.

a if x = y,
(f>(y) otherwise.

E xam ple 6.5.1 Let X = N and A = R. We can write

sub((f),i,r) as <J>[i] := r

6.6 The Topology o f Uniform Convergence 114

6.6 The Topology of Uniform Convergence
In this chapter we are setting up some mathematical machinery that will allow
us to describe approximation. At the heart of approximation lies the notion of
distance, and so in this section we define mathematically a common method
of comparing distances between spatial objects.

Distances between spatial objects correspond with specifying a norm and
we now look at the special case of the compact-open topology on the set of total
continuous functions in C (K , R) where X = K , a compact space and A = R.
The norm we use is the sup norm, or otherwise referred to in the literature as
the norm of uniform convergence. Most textbooks outlining the compact-open
topology construction, such as [11], [26], [27] and [52], give special treatment to
this norm. It was also studied in the early papers of Arens [3] as an important
special case of the compact-open topology.

In this section we define the sup norm on C (K , R) and show that it satisfies
the properties of a metric on C(K, R). By defining a base using this norm, we
are able to prove a theorem relating it with the compact-open topology. We
use the sup norm || — || : C(A ,R) —> R to compare spatial objects, defined
pointwise from the absolute function on the real numbers. For / G C(K, R)
we have

Furthermore, it is easy to show that the sup norm satisfies the properties of
a metric space on the set C(K, R), and thus this norm defines what we could
intuitively describe as a measurement of “distance” .

Continuing with the notion of distance, we define e-spheres around spatial
objects: For e > 0 we define the open e-sphere

which specifies the family of functions that are within e of / .
Now, the sup norm on C (K , R) defines a metric, and therefore by Definition

3.8.17 defines a topology on C'fA'jR). The basis for this induced topology
according to Lemma 3.8.3 is the family

and to compare / to another spatial object g we simply evaluate

IU - sIL = sup{|(/(x) - sWD-

6.6.1 The Compact-Open Topology on C(K, R)

B(f ,e) = { g e C (K , R) \ \ \ f - g \ \ i x <e}

•%> = | / € C(K,M.),e > 0}

of all e-spheres.

6.6 The Topology o f Uniform Convergence 115

We show that the induced topology from this metric is in fact the same
as the compact-open topology on C(K,R) . That is, a set B is a basic open
set in the compact-open topology & if, and only if, B is open in the topology
induced by the sup norm <%o. Thus we state and prove

T heorem 6.6.1 The topology induced by the sup norm is the compact-open
topology. That is,

P roof The proof is found in [26] (p.271) and is as follows:

C We show that given a nbhd W (K , U) of a function / € C(K, R), an e-nbhd
B (f , e) of / can be placed completely within W (K , U).

Continuous functions preserve compactness, and so the image set f[K] is
compact. We know f[K] fl [R \ U] = 0 and we put e = d(f[K\, [R \ [/]),
which is always positive because the sets are disjoint. This yields / €
B (f , e) c W (K , U) .

D Conversely, we show that each e-nbhd B(f , e) contains an open set W(K, U).
Since K is compact, it can be covered by finitely many open sets U\ , . . . , Un
such that the greatest distance between two points in each image set
f[Ui], denoted S(Ui) is less than | for each i = 1 , . . . , n . Let V* be
an |-nbhd of the compact image f{Ui). We have 5(Vi) < |e , and so
/ £ f l j (Ui, Vi) C B(f , e), completing the proof. ■

We make some remarks on the density condition on C(X, A) in terms of
the compact-open topology and the sup norm.

In the language of the compact-open topology, D is dense in ^ (X , A) if for
any subbasic set W (K , U) of C (X , 4̂) we have

D n W(K, U) ^ 0.

Now consider the sup topology over the set C ^ R) , where X = K and
A = R with the standard topology. In the context of the topology induced by
the sup norm, D is dense in C (K , R) if any spatial object can be approximated
to an arbitrary degree of accuracy by objects in D. If we wish to approximate
an object (j) e C (K , R) to within an arbitrary precision say, e > 0 using objects
in D , then we find a g 6 D such that for all points x E X

d((j>(x),g(x)) = \<f>(x) - g(x)\ < e.

In terms of the sup norm we write this as

6.7 Equational Validity on C(X, A) 116

6.7 Equational Validity on C (X , A)

In this section we give a useful result which shows that it is sufficient for an
equation to be true on a dense subset D of a topology A to be true on the
entire space A. Then by the Validity Theorem 4.3.1, we prove that equational
validity on a dense subset of A is suitable for the equations to be valid on the
pointwise lifted algebra C{X, A). We begin with

Lemma 6.7.1 Let X have an arbitrary topology, A a Hausdorff space, and let
f ,g : X —> A be continuous functions. I f D C X is dense and f = g for all
points in D then f = g for all points in X .

P roof We follow closely Dugundji’s proof [26] (p. 140), where the following
lemma is given:

Sub Lemma 6.7.1 Let X be arbitrary and Y be Hausdorff and f , g : X —>Y
be continuous. Then {x \ f {x) = g{x)} is closed in X .

This lemma states that the set of points U = {x | f i x) = g(x)} is closed in
A. Now this closed set U contains every point x of D, but by the definition of
density 3.8.14, we have X = D C U = U, and thus for each x € X f (x) = g(x)
completing the proof. ■

Theorem 6.7.1 Let D be a dense subset of the topological E-algebra A. Sup­
pose t and t' are terms in T(E, Y) . Then

1. t = t' is valid in D if, and only if,

2. t = t' is valid in A.

P roof Recall Definition 4.3.2 in Chapter 4, Section 4.3.3 tha t an equation is
valid if, and only if,

V(fli, • • •, an) [[^].a(&i> • • • > &n) — U(ai , • • •) ®n)]*

(1) => (2). We define the functions f : A n —> A to be

f (^1 } • • • ; On) = [t]A(ai, ■ • •) ®n)

and g : A n —> A to be

g{a\ , . . . , an) — |£ • • • ? ®n)

for all a i, . . . , an € A. Then by Lemma 6.7.1 we have / = g on D =$> f = g
on A.

(1) <= (2). This is obvious since if the equation t = t' is valid on A, it is
certainly valid on some subset D of A. ■

6.8 Inverse Limits o f Topological E-Algebras 117

Theorem 6.T.2 Let D be a dense subset of the topological E-algebra A and
C (X , A) the pointwise lifted algebra over an arbitrary topological space X . Sup­
pose t and t' are terms in T(E , Y) . Then

1. t = t' is valid in D if, and only if,

2. t = t' is valid in C (X , A).

P R O O F (1) =$> (2) . Suppose t = t' is valid in D. Then by Theorem 6 . 7 . 1 we
have t = t' is valid in A , and by the Validity Theorem 4.3.1 t = t' is valid in
the pointwise lifted algebra C (X , A).

(2) (1). Conversely, suppose t = t' is valid on C(X, A). Then again
by the Validity Theorem 4.3.11 = t' is valid in A. But certainly if the equation
is valid on all of A, then it is valid for a subset D of A. ■

6.8 Inverse Limits o f Topological E-Algebras
Section 6 . 6 of this chapter we have shown the equivalence of the compact-open
topology and the topology induced by the sup norm, under the condition that
our space X = K is compact. It was stated that the motivation for such
a characterisation of the compact-open was for the approximation of spatial
objects. However, many of the examples we have already seen are for non­
compact spaces such as the real numbers. In fact, our application of spatial
objects to Constructive Volume Geometry uses the Euclidean space E 3, i.e. R3

equipped with the Euclidean metric. Thus in our general theory of abstract
spatial data types, this compactness requirement is usually not feasible.

To remedy this situation, we define the algebraic construction of an inverse
system over the family of compact subsets of the space X . We define a topology
over this construction and Theorem 6.8.1 proves that it is indeed equivalent to
the compact-open topology on C(X, A).

6.8.1 A Topology on the Inverse Limit
Define the family

A = {Ai \ i 6 1}
of E-algebras where I is an index set. Supposing tha t each of the E-algebras
in A is a Hausdorff space, Theorem 1.3 in [26] (p. 138) ensures tha t the product
topology on A (Section 3.8.3 of preliminaries) inherits the Hausdorff prop­
erty as well. Furthermore, the topology on limA is the induced or subspace
topology of H A. Now recall from the Preliminaries Section 3.7.2 we defined
the projection map restricted to the inverse limit as

<pi : 7Ti | limA : limA —> Ai.

We use this in the next lemma, reproduced directly from [26] (p.428):

6.8 Inverse Limits o f Topological E-Algebras 118

L em m a 6.8.1 I f I is a directed set, then the sets

{ (f\l \U] | for all i 6 I and for all open U C A }

form a basis for limA.

P r o o f Let x G V where V is an open set in limA. Since limA is a subset
of there are finitely many indices a i , . . . , a n and open sets Uai C
A ai, -- - ,Uan C A an such that

x e (Uai , . . . , Uan) fl limA C V.

We want to show that for some suitable i E I and open set U C Ai

X e <j>~1[U] C (Ua i , . . . , Uan) fl limA

Because I is directed, we can choose an i E I such tha t au, . . . , a n < i and
then define

j=i
which is open in the coordinate space A- We have

= fi< w
j=i

so that an element a 6 limA belongs to ^ 1[U] if, and only if, i t ’s a j-th
coordinate is in U aj for each j = 1 Hence we have a 6 4 \ l \U] C
(Uai,- • •, Uan) fl limA. ■

6.8.2 An Inverse System on the Compact Subsets of X
Let = {K | K is a compact subset of X } be the collection of compact sets
of the Hausdorff space X . We prove a lemma tha t shows Jff forms a directed
set under set inclusion denoted < where we define the relation I < J to mean
I C J for any pair of sets in

L em m a 6.8.2 The countable family of all compact spaces in a Hausdorff
space X where X = U ^ K i forms a directed set under the relation <.

P r o o f This proof is similar to [27] (p. 160). The family is partially ordered
since for any compact sets / , J and K we observe the properties of

6.8 Inverse Limits o f Topological T-Algebras 119

reflexivity: I C /,

tran s itiv ity : I C J a n d J C K i m p l i e s I C K a n d

an ti-sym m etry : I C J a n d J C J i m p l i e s I = J

from basic results in set theory. Now, given any two compact sets I and J in
we must exhibit a set K in such that I , J G K . Simply define K to be

the union

' l b -
By the compactness properties of I and J the union is a compact space and is
in Jff. It also has the desired property I , J C K , hence is a directed set. ■

D efinition 6.8.1 [26](p. 12) Given a function f : X —> A and a subset I C X ,
the map f considered only on I is called the restriction of f to I, is written f j .

We define C (A) to be the product Y[KeJ(f C (K , A) of function spaces
indexed by J*T, where each coordinate function space has the compact-open
topology. Thus, an element of A) is a tuple

(/) = fh x f i 2 x f h x • • •

of continuous functions, where each / / is a function (or restriction) from the
compact set I to the topological E-algebra on A, belonging to the coordinate
space C(I ,A) (See Figure 6.3).

We focus our attention to a particularly useful subset of this product. From
[27](p.160 — 161), we define an inverse system S (X) over C(J%',A) consisting
of

(i) the directed set J^ ,

(ii) a J^-indexed set of E-algebras {C (K , A) \ K € J f } ,

(iii) an indexed family of E-homomorphisms (f)j : C (I , A) —> C(J, A) for each
J C I such that (j) ̂o <f>j = (fix for all K C J C I and \ is the identity
map.

The inverse limit \ imC(Jff ,A) of S (X) is the set

lim C p ^ , A) = | (/) G J J C(K, A) \ for all I > J such tha t (f>j(fi) = / j | ,

where the homomorphisms 4>j are simply the projection functions such that
for I > J we have (f>j(fi) = fj', the restriction / / is projected onto a smaller
restriction f j . This condition also guarantees tha t the restriction functions are
compatible. That is, for any point x E I fl J we have f i{x) = f j{x) .

6.8 Inverse Limits o f Topological E-Algebras 120

(/) I k f j f i

C{K, A) C{J , A) C{I ,A)

Figure 6.3: A thread (/) in the inverse limit.

The purpose of defining such a construction is to prove an important the­
orem. We want to show that the inverse limit limC (J f , A) is “the same as”
the set C(X, A) with the compact-open topology. We do this by defining a
homeomorphism F : l i m A) —» C (X , A) so that

F(f) = U ' X A,
Kejxr

where the restriction fa is in the subset C(K, A). Defining the union of all
restrictions makes sense because each element is a thread of the inverse limit
and thus the restrictions are compatible.

Theorem 6.8.1 (The Inverse Limit Theorem)
The inverse limit l i m A) is homeomorphic to C(X, A) .

P r o o f Define F : limC (J f , A) —> C(X, A) as

F(f) = U f R '• X A.
Ke x

For the result, we show that F is a homeomorphism by proving

(i) F is continuous,

(ii) F - 1 is continuous, and

(iii) F is a bijection.

(i) To show the continuity of F, select any set W (K , U) open in C(X, A) and
show the preimage F~l \W (K, U)\ is an open set in limC(JF, A). Now,
by the definition of F, the preimage

F - l \W {K,U)\ = (lW{K, U)k) f | JimCpfT.A).

That is, each preimage is mapped by F - 1 to an open set in UmC(Jf , A)
where each element (thread) satisfies the conditions of an inverse limit,
and has as an element in the K- th coordinate system, all functions map­
ping compact K to open U. From the definition of the topology on the
inverse limit, this is an open set. Hence F is continuous.

6.8 Inverse Limits of Topological E-Algebras 121

(ii) To show continuity of the inverse function F *, we show tha t the preim­
age F[S] is open where

S = (W(Ki , t / i) , . . . , W (K m Un)) fl l i m A)

is an open set of the inverse limit. That is, S is the set containing all
threads such that

(/) = / / f l X X / / f „ x

W{Ky.,U{) W (K n,Un)

where W (K \ , U{), . . . , W (K n, Un) are open sets in the compact-open topol­
ogy-
So we are interested in functions in C(X, A) tha t map the compact sets
Ki to Ui for 1 < i < n and all the other compact spaces can be mapped
to any other open set U in A. Thus, F maps the set S to

H W (K uUi) | J (u W(K, U)
i = 1 ' K

for K ^ { K i , . . . , K n}. This is an open set in the compact-open topology
on C(X, A), and hence the inverse mapping F - 1 is continuous.

(iii) We prove the mapping F is a bijection.
For injectivity we need to show

(/) ^ (S) = * ■ F ((f)) * F ((9)) -

Assume (/) ^ (g). This implies that there is a Z G X such that f z ^ 9z-
That is, 3x € Z : fz(x) 7 ̂9z{%)- But this implies

F{{})) * F((g)).

For surjectivity we exhibit for each / G C(X, A) there exists a (/) G
limC(Jf f ,A) such that F((f)) = f . Pick any function / G C(X, A). We
simply observe that the thread

(/) = ' • • x / / x f j x f K x - • • .

of restrictions of / to the compact subsets in Jff satisfying the properties
of the inverse limit is the image of the function / in C (X , A). That is,

|sJ Ik = />

therefore F is onto.

Hence, both F and F~l are continuous and F is a bijection, and therefore
a homeomorphism. ■

6.9 Notes and Sources 122

6.9 N otes and Sources
The compact-open topology is well understood and its properties have been
studied extensively and documented in much of the literature: Bourbaki [11],
Dugundji [26], Engelking [27] and Kelley [36], where many of the topological
results contained in this chapter can be found. Also useful is Aren’s early
paper A topology for spaces of transformations [3] giving the details of defining
a metric space on the compact-open topology.

In Section 6.4 I used Dugundji [26] for most of the material regarding the
continuity of composition of functions, evaluation and for the Equational Va­
lidity Lemma 6.7.1.

The inverse limit construction of a family of topological algebras can be
found in [26] and in [43]. Its use in connection with C(X , A) is ideally suited
to approximate the compact bounded boxes seen in Constructive Volume Ge­
ometry.

Chapter 7

Expressiveness and
Completeness

7.1 Introduction
As we have seen, the applications of spatial object data types axe innumer­
able (e.g. from machine memory to medical imaging) and so are the possible
choices of operations for each application. For example, Constructive Volume
Geometry is an algebraic framework to support the selection of interesting high
level operations in Volume Graphics and its applications. When dealing with
CVG, computation of such spatial objects and their operations is vital. Thus,
in the interest of developing a computability theory, some finite method of
representing the spatial objects we are interested in is necessary.

Speaking generally, we would like some operations and some basic spatial
objects that we could use to generate all the spatial objects we are interested in.
In this way, we would have a composition of spatial objects and the operations
performed on them to create more and more complex objects.

The primary obstacle to this approach is tha t this set of generated se­
quences of operations on spatial objects, which we will call “terms” , is count­
able. Therefore we definitely cannot represent every spatial object in the un­
countable spaces that we are interested in as a term.

We can however produce a set as described to generate all spatial objects
possibly by approximation. We already have the necessary topological foun­
dations which an approximation theory demands. This chapter presents the
Stone-Weierstrass Theorem as our method of approximation.

123

7.2 The Expressiveness and Completeness Problems 124

7.2 The Expressiveness and C om pleteness Prob­
lems

This chapter aims to answer the completeness problem for the general theory
of spatial data types. To answer such a question in a general setting is a
complicated task, and we proceed in stages.

Approximation
To generalise, in the first stage we have to understand what it means for a
set of operations to be adequate. We address this concern in Section 7.6. In
choosing finitely many operations F i , . . . , Fk on C (X , A), we determine classes
of spatial objects by applying the operations to some given set B of spatial
objects. Specifically, each term over the signature of the chosen algebraic
structure determines the spatial object which lies in the subalgebra generated
by B, simply (F)s .

Clearly the set of terms is countable so we know tha t most spatial objects in
C (X , A) cannot be constructed by the repeated application of the operations.
We therefore adapt the completeness question as follows:

C om pleteness Can we find a collection of operations that is adequate to ap­
proximate all the spatial objects we are interested in?

The idea of approximation adds a new and complicated parameter to the
problem. For to understand adequacy we must choose not only a collection of
operations, but a method of approximation. In any particular application area
there may be more than one standard topology that captures useful notions of
approximations.

For example, we may use the sup norm on C(K, R), where K is compact.
This approximation works by finding the maximum value the spatial object (f>
attains in the space K , even though this maximal value may only reflect a small
portion of the entire function (f). Of course the sup norm and compact-open
topology are a starting point for any continuous spatial data type, and for the
purposes of this chapter we use the compact-open topology (induced by the
sup norm). We have already developed the mathematics required for approxi­
mation with the sup norm in Chapter 6 and provided some useful topological
and algebraic results.

We axe now in a position to give an account of the completeness problem.

Inform al D efin ition o f th e C om pleteness P rob lem :
Can we find

(i) a collection of operators F = {F i , . . . , F*J on C(X, A),

7.3 The Stone-Weierstrass Theorem 125

(ii) a subset B C C (X , A) of basic spatial objects
such that when we apply the operations of F to the elements of B the set (B)f
we generate is adequate to approximate all spatial objects. Specifically, factors
we also need to consider
(iii) a topology on C(X, A) to formulate the method of approximation.

In this case, the requirement of adequacy based on approximation is simply

(B)f is dense in C(X, A).
The method of approximation tha t we use, and is of central importance to

our work, is the Stone-Weierstrass Theorem given in Section 7.3. This theorem
allows us to approximate any spatial object in C (K , R) using only objects that
are generated by performing some simple operations on a set B C C(K, R) of
basic spatial objects. This set B must satisfy some simple properties:

1. The basic spatial objects separate the points of the space K, and

2 . contains at least one non-zero constant spatial object.
In Section 7.4 we use this result to extend the theorem to other types of spatial
objects

• C (K , [0,1]), mapping points of K to the unit interval (Lemma 7.4.1),

• C(K, [0, l]m x Rn), mapping points of K to the Cartesian product [0, l]mx
Rn (Lemma 7.4.2); of particular importance for CVG, and

• as a special case of the previous result, setting m = 0 gives us an approx­
imation for spatial objects in C(K, Rn).

Section 7.6 examines conditions for E-operations to be adequate i.e. gen­
erate a dense subset by means of the Stone-Weierstrass Theorem.

Lastly, Section 7.7 extends Stone-Weierstrass to cases where K is not com­
pact. Using the standard inverse limit construction of compact sets we show
a spatial object which approximates locally on a compact set is suitable to
approximate globally.

7.3 The Stone-W eierstrass Theorem
In Section 6 . 6 we described the conditions needed for a set to be dense in

In this section we describe how the Stone-Weierstrass method of
approximation uses some simple operations on basic spatial objects to produce
a dense subset of all spatial objects. We do not limit ourselves to just the
spatial objects of the form 0 : K —> R, but also look at the spatial objects in

C{K, [0,1]) and C(K, [0, l]m x Rn).

These results will be particularly useful when applying the general theory to
CVG.

7.3 The Stone-Weierstrass Theorem 126

7.3.1 The Sublattice C(X, R)
We consider a lattice structure on C(X, R), for an arbitrary topological space
X (not necessarily compact) and prove a result which shows C(X, R) satisfies
the properties of a lattice. The lattice operations have already been defined in
Chapter 4 for the function space F(X, R) and they are displayed as:

A lgebra F(X,R)£,at

C arrie rs F(X, R)

O perations A : F(X, R) x F(X, R) F(X, R)
V : F(X,R) x F(X, R) -»• F(X, R)

D efinitions (/ A g)(x) = min {f(x),g(x))
(/ V g)(x) = max(f (x) ,g(x))

We prove that
C(X, R) Lot 6 Alg(T}iat,TLat)

by showing it is a sublattice (E/af-subalgebra) of F(X, R):

L em m a 7.3.1 For any topological space X , C(X, R)Lat is a Y,iat-subalgebra of
F (X , R) Lat.

PROOF We must show that for any continuous functions / , g G C(X, R) the
functions (/ A g)(x) = mm(f(x) ,g(x)) and (/ V g)(x) = max(f (x) , g(x)) are
also in C(X, R). We proceed as in [52](p.107).

Observe that intervals of the form A = (—oo, a) and B = (b, +oo) for a, b 6

R form an open subbase of R. That is, all open sets can be described in terms
of finite intersections of A and B. For example: (0,1) = (—oo, 1) fl (0, +oo),
(—1,1) = (—oo, 1) fl (—l,+oo). We show (/ A g) and (/ V g) are continuous
by showing the preimage of the sets A and B are open.

We show that the function (/ A g) is in C(X, R):

Case: A

(f A g y ' l A] = { z :m in { f (x) , g (x))<a }
= {x : f (x) < a } U {x : g{x) < a }

Case: B

i f A g) 1[B] = {x : min(f (x) ,g(x)) > b}
= {x : f (x) > b] fl {x : g(x) > b}

7.3 The Stone-Weierstrass Theorem 127

Similarly, we show that the function (/ V g) is in C(X, R):

Case: A

i f V = { x '■ max(/(z)»0(z)) < a}
= {x : f (x) < a} fl {x : g{x) < a}

Case: B

(/ V p)_1[£] = {x : max(f (x) ,g(x)) > b}
= {x : f (x) > b} U {x : g(x) > 6 .}

Each case yields a finite intersection of subbasic open sets of the form
(—oo,a) and (6 , +oo), and hence are open in R. Since (/ A g) and (/ V g)
axe continuous, they are in C(X, R) which satisfies the sublattice conditions
completing the proof. ■

7.3.2 Dense Lattices of C (K , R)
Consider a subset L of the set C{ K , R) of all continuous spatial objects mapping
a compact space K to the real numbers. Using the operations of a lattice on
this subset L of continuous spatial objects, we show the generated subalgebra
(L)zLat is dense in C(K, R). To do this, we need the following property.

D efin ition 7.3.1 (S trong S epara tion) We say a subset L of C(K, R) is
strongly separating if there exists a function f xy in L such that for any dis­
tinct points x ,y € K and numbers a, b G R we have f xy(x) = a and f xy(y) = b.
We say that the function f xy is a strongly separating function.

T heorem 7.3.1 Let L be a Eiat-subalgebra of C(K,M) that strongly separates
the points of K . Then the subalgebra generated by the operations m.E/at on the
set L is dense in C(K, R).

i.e. Given e > 0 and <f G C (K , R), we can construct a g in (L)zLat such
that

l k - s l L < e -
P r o o f Adapting the proof of [52] (p. 158) and [47] (p. 165), we construct a func­
tion g in (T)siat which can approximate the given function 4> G C(K, R) to
within an e-error margin.

Fix a point x in K and follow this procedure for every point y ^ x in K\

1 . By the strong separation property of L, we have a function f xy : K —► R
in L such that f xy(x) = <f>(x) and f xy{y) = <j>(y).

7.3 The Stone-Weierstrass Theorem 128

2 . Obtain an open set Gy = {z € K | f xy(z) < (f)(z) + e}. This is an
open cover for K since each point y is contained in at least one Gy; i.e.
f xy{x) = 4>{x) < 4>{x) + e and f xy(y) = <j>(y) < <f>(y) + e.

3. By the compactness of K select a finite subcover GVl, . . . , GVm. We pick
functions f xyi, . . . , f xyn in L which we associate with each of these open
sets whereby f xyi(x) = <j>(x) and f xyi(yi) = </>(&).

4. We construct the function f x — f xyi A • • • A f xym. Observe that f x is in
(L)Sjat and has the property f x(z) < (f)(z) + e for each z e K.

5. Define the open set Hx = {z € K \ f x(z) > (f>{z) — e}. This set is
non-empty since f x(x) = <f>(x) > (f)(x) — e.

We now have an open set Hx and an associated function f x which has the
ii 11Mproperty | </> — f x \\ < e for each point x in K. By the compactness properties

of K , we select open sets HXl, . . . , HXk which provide a finite subcover of K.
With each function f x. associated with the open set HXi we define g =

fxi V • • • V f Xk also in (T)Slat. The functions f x. are bounded below by <fi(z) — e,
and thus so is g. Now, observe that for all z € K, g(z) > (j>(z) — e and each f Xi
has the property Such that for all z € K f Xi(z) < 4>(z) + e. Hence, we conclude
that <f)(z) — e < g(z) < (f)(z) + e for all z in K. That is,

l k - s L < e >

which means that g € (^)e Io4 is a suitable approximating function for (f>. ■

This theorem describes a method of producing a function g in L which
approximates the input 0 to within the error-margin e. In fact, the proof gives
us a method of constructing such a function using finite meets and joins. The
general form of this term is

i'i.V 11) • • • j Vlmi • • • 5 Vk\i • • • j Vkm) (jj 11 A • • • A yim) V • • • V (jjkl A • • • A ykm)

and evaluation with the functions described in the proof yields

m r , , i Vklj • • ■ > 2/fcm)l (/iiyn • • • j fxiymi • • • > /xfcj/i j • • • j fxkym)
= (f x 12 /1 A • • • A f Xlym) V * * * V (f x kyi A • • • A f Xlcym)

= 9

which is an approximating function of (/>.

7.3 The Stone-Weierstrass Theorem 129

7.3.3 The Stone-Weierstrass Algebra
Theorem 7.3.1 proves, essentially, a density result for a sublattice L of C(K, R).
To do this, we assume a strong separation property, i.e. a function f xy in L such
that for any distinct points x , y 6 K and numbers a, b G R we have / Iy(x) = a
and fxy{y) = b. We have no information on how such a function could be
constructed, merely the guarantee that it exists. This makes analysing the
effectivity of the theorem impossible.

Therefore, we introduce a signature Esw which has operations of addition,
multiplication and scalar multiplication for spatial objects, and is displayed as

Signature T^sw

Im p o rt Data

Sorts Space, SO

O perations + : SO x SO --> SO
x i SO x SO - > 5 0
• : Data x SO - > 5 0

Using this signature we explicitly construct strongly separating functions
by performing the Es^-operations on a subset of C(K, R), which we will call
basic spatial objects. This set of basic spatial objects requires two weaker
assumptions. The set must contain:

1 . a non-zero constant spatial object, and

2. for any points x ^ y in K there exists a separating function h such that
h(x) ^ h(y).

Separating functions are generally chosen depending on the application. For
example, users of CVG may have functions which are relevant to the graphics
application which happens to separate points. This would be the obvious
choice of separating functions in this instance. From these two assumptions
we construct a strong separating function in Theorem 7.3.2. Theorem 7.3.1
then shows that the subalgebra generated by the repeated application of the
Esw-operations on the basic spatial objects is dense in C(K, R).

Recall in Chapter 6 we defined the compact-open topology on the set
0(7^, R) of all continuous functions from K to R. We now define a topo­
logical Esw-algebra with the carrier C(K, R) which interprets the symbols
+ , x and • in Tsw by pointwise extension from the common functions + r ,
Xr and -r on R. That is, C(K, R) has the compact-open topology, and the

7.3 The Stone-Weierstrass Theorem 130

Esvr-operations are continuous by Lemma 6.5.1, Chapter 6 . We display the
interpreting X^w-algebra C(K, R) as follows:

A lgebra C(K, R)

Im p o rt R

C arrie rs K, C(K, R)

O perations
+ : C(K, R) x C(K, R) -+ C(K, R)
x : C(K, R) x C(A,R) C(K, R)
• : R x C(K, R) —> C(K, R)

D efinitions {(j) + <ff){x) = (f)(x) + R 4>'(x)
((f) x (f>'){x) = <p(x) x R <f/(x)
(A • cf>)(x) = X -r (f>{x)

We use the Esw signature not only for the set C ^ R) , but also for our
extensions of the Stone-Weierstrass Theorem. We show some of these sets in
Figure 7.1.

T>sw

C(K, R) C{K,[0,1]) C { K, Rn)

Figure 7.1: Examples of E s w algebras

Suppose that B is a topological Esw-subalgebra of C(K, R). We show that
the closure B , Definition 3.8.6 in the preliminaries, is also a Egw-subalgebra.

Lem m a 7.3.2 If B C C(K, R) is a Hsw-subalgebra then the closure B is also
a T,sw-subalgebra in C(K, R).

P r o o f The main idea behind the proof is to show if </> and <ff are spatial
objects in B then so axe

4> + (ff, (f) x (j) and A • (f).

The reader is refered to [26] (p.280) for complete details. ■

7.3 The Stone-Weierstrass Theorem 131

7.3.4 The Absolute Value Function
The absolute value function on the real numbers is commonly defined by two
cases

I I _ f r if r > 0 ,
'r 1 —r if r < 0.

We lift the absolute function pointwise to define an operator | —| : C (K , R) —>
C(K, R) as \<j>\(x) = \(t>(x)\ for a spatial object <fi in C(K, R) and a point x in
X .

Lem m a 7.3.3 The absolute value function G = \ — | : C(X, R) —> C(K, R) is
continuous.

P roof Before proving the result, it is useful to first prove the continuity of
g = | — | : R —> R. We consider three cases as follows:

1. 0 < a < b. We have

p _ 1 [(a , 6)] = (a, b) U (- a , - 6) ,

which is open in R.

2 . a < b < 0. Since g returns no negative values

£-1 [(- a > -&)] = 0 -

3. a < 0 < b. The interval containing 0 is the most complicated case. We
can rewrite the interval (— a , b) as (- a , 0) U {0} U (0, b). Then

g '1 [(- a , b)] = g ' 1 [(- a , 0) U {0} U (0, b)]
= 0 U {0} U (0, b) U (—6 ,0)
= (- 6,6).

which is an open set in R.

Thus g is a continuous function. By Theorem 6.5.1 in Chapter 6 , the pointwise
lifted function G : C(K, R) —> C(K, R) defined by

G{4>){x) = \(f>(x)\

is continuous. ■

Lem m a 7.3.4 Let B be a Hsw-subalgebra ofC(K, R); and B i t ’s closure (also
a T>sw -subalgebra). I f f is a function in B then the function \ f \ is in B.

7.3 The Stone-Weierstrass Theorem 132

P r o o f In [2 6] (p.2 8 0), it is proven than there exists a sequence of polynomials
{pn} that converges uniformly on [0 , 1] to the function <f{t) = y/t. Now to
prove that the absolute value |/ | is in B we show that each neighbourhood
n ”=i W(Ki,Ui) of |/ | contains some function g £ B . It turns out that given
e > 0 and letting g(x) = y/x yields ||/|(a:) — g{x)\ < e for each point x £ K =

By the compactness of K , each function is bounded in C (K , R), and so we

uniformly on K.
Since each polynomial in the sequence pn(<£?) is in B and the uniform limit

| / | is in B we have the result. ■

We use this result on the set (B)xsw, such that if f £ (B)xsw then Lemma
7.3.4 shows that | / | £ (J3)s . That is, the absolute value of the spatial object
can be approximated by objects in (B)xsw.

7.3.5 The Max and Mi n Functions
The set C(K, R) with operations A and V is a sublattice of F(K, R) by Lemma
7.3.1, and can be implemented using the standard max and min functions on
the reals:

for all x £ X and 0 ,0 ' £ C(K, R). These standard functions can be expressed
in terms of arithmetical operations and the absolute value function on R:

Lem m a 7.3.5 The equations

have a constant bound C < oo for | / | where |/(a:)| < C for all x £ K . Using
the sequence of polynomials {pn} we write

(j>'){x) = Max{(j>̂ (f)l){x)
= max(0 (a;),

(<j) A(j)')(x) = Min((f>,(f)')(x)
= min((p(x), $ (x))

max(a, b)

min(a, b)

(7 .1)

(7.2)

hold for all a,b £ R.

7.3 The Stone-Weierstrass Theorem 133

P r o o f (7 .1) There are two cases to consider:

Case 1. a > b.

max(a, b) — a

^ (a + 6) + i (a - 6)

- (a + b) + - |a - b\.

Case 2. a <b.

max(a, b) = b

= - (a + 6) + -(b — a)

= 2^a + ^ + 2 _̂ â ~~ ^

= - (a + 6) + - |a — 6 | by definition of absolute value,
z z

(7.2) The proof for the min function is similar. ■

The next lemma says that the meet and join operations of a lattice on
C(K, R) can be described in terms of the elements in the generated E s w
subalgebra (jB)esiv. This result is taken from [52](p.l59).

Lem m a 7.3.6 The Hsw-subodgebra B o fC (K , R) is a S iat-subalgebra o fC (K , IE
That is, B € Alg(Eiat,Tiat).

P roof [52](p.159) By Lemma 7.3.4 for 0 € B the absolute value \4>\ is in B.
Thus each of the necessary operations to define the M ax and M in functions
are in B, and therefore (f) A (j)' and (j)V $ are in B , yielding the result. ■

7.3.6 The Stone-Weierstrass Theorem for M
The theoretical framework which we have developed thus far greatly simplifies
the proof of the Stone-Weierstrass Theorem. Now, suppose we have some sub­
set B = {&i, b2, . . .} of C (K , R) of basic spatial objects. W ith some additional
properties, we can replace the strong separation property on our set B with a
weaker property:

D efinition 7.3.2 (W eak S eparation) We say a set B C C (K, R) has the
weak separation property if for each pair of points x and y in K there exists a
function h € B such that

h{x) ^ %) .

7.3 The Stone-Weierstrass Theorem 134

We prove a result which shows tha t the strong separation property can be
replaced on the subset B with a weaker separation property, assuming that we
have at least one non-zero constant spatial object in B :

Lem m a 7.3.7 Let B be a subset of C(K, R) which is

• weakly separating, and

• contains a non-zero constant spatial object.

Then (B)^sw is strongly separating.

P roof Given x and y in K and a, b in R we have a h : K —> R in B such that
h(x) 7 ̂h(y). Now construct a spatial object f xy : K —> R in (B)xsw such that

for any two distinct points x =£ y in K and a, b € R. Consider a function \h + fi
where A, p are constants in R such that the equations

are satisfied. To find the appropriate values for A and //, we rewrite Eq. 7.3 as

We set f xy = Xh + p as the required strongly separating function, completing
the proof. ■

T heorem 7.3.2 (S tone-W eierstrass) Let K be a compact topological space
and C(K, R) be the set of all continuous spatial objects (j> : K R with the
compact-open topology. I f B is a subset of C {K , R) which

f xy(x) = a and f xy{y) = b

a = A h(x) + p,
b = A h(y) + //

(7.3)
(7.4)

p = a — Xh(x) (7.5)

and substitute into Eq. 7.4 yielding

b = A h{y) + (a — Xh(x))
= A(h(y) - h(x)) + a (7.6)

and rewriting Eq. 7.6 gives the value for A:

h (y) - h { x) '

By substituting this value into Eq. 7.5 yields the value for fi:

7.4 Extensions of the Stone-Weierstrass Theorem 135

• is weakly separable, and

• contains a non-zero constant spatial object,

then the Esw-subalgebra generated by B is dense in C(K,M).
i.e. Given e > 0 and </> € C (K ,R), we can construct a g G {B)xsw such that

U ~ s \ L < e -

P roof By Lemma 7.3.7 we can construct a strong separating function in
(.B)j:sw and by applying Lemma 7.3.6 to (-B)s , we conclude (B)Esw is a
lattice.

Applying the density result for lattices in Theorem 7.3.1, the set (B)Esw
is dense in C(K, R), and since it is the closure, (B)^ = C (K, R). But by
Definition 3.8.14 this just means tha t (B)xsw is dense in C(K, R), yielding the
result.

7.4 Extensions of the Stone-W eierstrass The­
orem

We have given a theory of spatial data types that maps points in a space
to data attributes. These attributes can be many things, such as tuples of
real numbers or more simply, spatial objects in C(K, [0,1]). How are we to
adapt the Stone-Weierstrass Theorem to these types of spatial objects? Our
motivation is chiefly from our need to approximate CVG spatial objects.

In this section we prove some extensions to the Stone-Weierstrass Theorem:
for spatial objects of the form K —► [0,1] and K —► [0 , l]m x Rn, where the unit
interval is usually interpreted by CVG as an “opacity” channel representing
the visual geometry of an object.

7.4.1 The Stone-Weierstrass Theorem Over [0,1]
Using the signature Esw, we introduce an interpreting Esvv-algebra which uses
specialized operations + /, Xj and •/ on the unit interval. For these operations,
we define a function which in effect “chops” the real number value to a value
in the unit interval.

Definition 7.4.1 (The Chop Function) The function a : R —» [0,1] is de­
fined by the following three cases for r € R:

(1 if r > 1 ,
a(r) = < r if r e [0 , 1],

[0 if r < 0 .

7.4 Extensions of the Stone-Weierstrass Theorem 136

We lift this function pointwise to define an operator A : C (K , R) —» C(K, [0,1])
as

A(<j>){x) = a((j>{x)) (7.7)

which takes a 0 in C(K, R) and “chops” it to return a function in the set
C(K, [0,1]). The chop function is used to define an interpreting algebra with
the carrier C(K, [0,1]) for the signature Esw-

Algebra C(jr,[o,i])

Import [0 , 1]

Carriers K , C (tf,[0 ,l])

Operations
+ / : C(K, [0,1]) x C{K, [0,1]) C (K , [0,1])
x , : C{K, [0,1]) x C(K, [0,1]) - C (K, [0,1])

•/ : [0,1] x C(K, [0,1]) —» C(K, [0,1])

Definitions (0 + / 4>'){x) = a(<j>(x) + „ tp '(x))
(<i> X i 4>')(x) = 4>(x) x R 4>'(x)
(A •/ <j>)(x) = A - r <p(x), 0 < A < 1

C orollary 7.4.1 Let K be a compact topological space and C (K , [0,1]) be the
space of all continuous spatial objects (f> : K —> [0,1] with the compact open
topology. I f B is a subset of C(K, [0,1]) which

• separates the points of space K ,

• contains a non-zero constant spatial object,

then the Esw-subalgebra generated by the repeated application of the T,sw~
operations on B is dense in C(K, [0,1]). __

That is, given e > 0 and any (j) € C(K, [0,1]); we can produce a g E (B)^sw
such that

l k - s | l o o < e -

P roof We use the Stone-Weierstrass Theorem 7.3.2 to produce a g' : K —» R
in C (K , R) with the property

l k - s ' I L < f

7.4 Extensions of the Stone-Weierstrass Theorem 137

Prom g' we construct a suitable approximation g : K —> [0,1] of (j>. To this
end, we show that the function A(g') : K —> [0,1] defined in Equation 7.7 is in
C(7^, [0 , 1]) and is a suitable candidate to approximate the function </> within
an e-error margin.

Sub Lem m a 7.4.1 Let g' : K —> R be in C (K , R). Then the composition
(a o g') : i f - [0 , 1] is continuous.

P r o o f To show the continuity of a : R —> [0,1], we exhibit an open preimage
oTl \U] for any open set U = (a, b) C [0,1] where 0 < a < b < 1. This is obvious
from Case 2 of the definition of a; which is simply the identity function. Thus

a _1[(a, 6)] = (a, b)

and by the continuity of composition of functions, (a o g') £ C (K , [0,1]). ■

To show that g = A(g') is a satisfactory approximation of 0 we do a case
analysis.

Case 1 If g'(z) > 1 then a(g'(z)) = 1 for all z 6 K , and so we know that
| (a o <7')(2) | < \g'(z)\. Furthermore, we have the inequalities 1 < g'(z) <
1 + 1 due to the fact that g' is a suitable approximation of (f>. By the
triangle inequality we write

sup| 0 (z) -g {z) \ < sup\(f){z) - g'(z)\ + sup \g'(z) - (oc o g')(z)\
zeK zeK zeK

< ^+sup|p/(z) - l |
^ z£K

Case 2 If g'(z) € [0,1] then a(g'(z)) = g'{z). This case is trivial since

sup |(f>{z)-g(z)\ = sup | 0 (z) - {aog ')(z)\
zeK zeK

= sup\(i>(z) - g'{z)\
zeK
e

< 2

< e.

Case 3 If g \z) < 0 then a(g(z)) = 0 for all z e K . But g' is a suitable
approximation for </>, the inequality

7.4 Extensions of the Stone-Weierstrass Theorem 138

is true, and so by the triangle inequality:

sup| 0 (z) -g (z) \ < sup \< p(z)-g '(z)\+ sup \g '(z) -g (z) \
z € K z E K x E Z

< ^ + s u p | ^ (z) - (aog ')(z)\
z zeK

< ^ + sup\g'{z)\
Z zEK
e e

< - + - by Inequality 7.8
Z Z

< e.

By the above cases the function g = A{g') in C (K , [0,1]) has the property

I I * - s l i c e < «

and is a sufficient approximation to </>, and thus is the required approximating
function. ■

7.4.2 The Stone-Weierstrass Theorem Over m + n Di­
mensions

Spatial objects in the Constructive Volume Geometry framework often have
the form

(j> \K -*[0, l]m x Rn,

where K is a compact space of E z and [0, l]m x l n represent attributes such as
colour, opacity or any measurable physical quantity. This section describes a
general Stone-Weierstrass Theorem that yields an approximating function for
any spatial object of the form (j) : K —> [0, l]m x Rn.

Before extending the Stone-Weierstrass The'orem, we make an observation
and consider some technical details.

O bservation 7.4.1 The function (j) € C (K , [0, l]m x Rn) can be written as an
(m + n)-tuple. For each x E K

<f>(x) = (<pi(x) , . . . , (f>m+n(x)).

When we wish to single out and work with a specific coordinate function
<f>i of (f) we use projection functions.

D efinition 7.4.2 Let <f> : K —* [0, l] 771 x Rn. Define the projection function
7T i : [0, l]m x R ^ R a s

i, • . • , — ttj.

The ith coordinate function fa : K —> R of (f) is the composition 7q o 0 : K —*
[0, l]m x Rn.

7.4 Extensions of the Stone-Weierstrass Theorem 139

Using the observation and definition, we state a lemma for which the proof
can be found in [47] (p. 18).

Lem m a 7.4.1 A function </> : K —> [0, l]m x Rn is continuous if, and only if
each coordinate function (pi is continuous.

P r o o f =>• Suppose (p is continuous. Then by the Composition Theorem 6:4.2,
71* o (p is continuous, for 1 < i < m + n.

<= Suppose each coordinate function (pi is continuous, for 1 < i < m + n.
Then for open sets U\ , . . . , Um C [0,1] and open sets Um+1 , . . . , Um+n C R each
preimage (7r* o (p)~l [Ui\ is open for 1 < i < m + n.

But <p~̂ [tt—1 [Ui]] = (no 0) _ 1 [£/*]; so (n o (p) maps open sets to open sets by
the continuity of (n o </>), and thus (p is continuous. ■

To measure the distance between spatial objects we use the Euclidean norm
defined as

lz ll2 = \
m+n

, lZ
i—1
E 2>

where z 6 [0, l]m x Rn. The sup norm over C(K, [0, l]m x Rn) is then

lklL = sup{|k(x)ll2}xeK

for (p € C(K, [0, l]m x Rn).
This Corollary is in essence a coordinatewise extension to the original Stone-

Weierstrass Theorem. Our reasoning follows closely to that of [47](p.166).

C orollary 7.4.2 Let K be a compact space and C (K , [0, l]m x Rn) the collec­
tion of continuous spatial objects with the norm ||0|| = supxeK{||0(rr)||2}. I f
H is a subset of C (K , [0, l]m x Rn) which

• separates the points of space K ,

• contains a non-zero constant spatial object,

then the Esw-subalgebra generated by repeated application of Esw-operations
on the spatial objects in H is dense in C (K , [0, l]m x Rn). That is, given e > 0
and (p G C (K , [0, l]m x Rn), we can produce a g G (H)xsw such that

l k - s l L < e -

P r o o f By Observation 7.4.1, the function we wish to approximate is of the
form (p = (0 i , . . . , (pm, <pm+1 , . . . , (pm+n)• We prove the Corollary by finding
approximating functions for each (pi G C(K, [0,1]) for 1 < i < m and (pj G
C(K, R) for m + 1 < j < m + n.

7.4 Extensions of the Stone-Weierstrass Theorem 140

hl h 1' t'm-Ll ? • • • 1 't'rr'm+1) • * • 5

} > m+n

Cm+1') • • • ? Cm+n

Figure 7.2: Producing a dense subset of C (K, R)

The set # contains separating functions, say,

h \ . . . , h a

each hl of the form

> /t’m+n

for 1 < i < s. Furthermore H contains non-zero constant functions, say,

where each coordinate function of c is a non-zero constant.

We build a subset A C C (K , [0,1]) containing

• the necessary separating functions from h1, . . . , ha. That is, each of the
coordinate functions h\ , . . . , € C (K , [0,1]) for 1 < i < s.

• one non-zero constant coordinate function, say, C\ G C(K , [0,1]) from the
function c.

Similarly, we build a set B C C (K , R) with the separating functions from
h1, . . . , h3 and a non-zero constant function cm+1 , as shown in Figure 7.2.

By Corollary 7.4.1 each of the coordinate functions <j>i, . . . , (j)m in C (K , [0,1])
can be approximated by functions in {A)xsw, and each of the coordinate func­
tions (f)m+i, • • •, (j>m+n can be approximated by functions in {B)^sw by the orig­
inal Stone-Weierstrass Theorem 7.3.2.

That means that given any q = m + n positive numbers

(C j , . . . , C m , (+ 1+ 1 , . . . , C m + n

7.4 Extensions of the Stone-Weierstrass Theorem 141

we produce the functions g i , . . . ,g m e (A)esw and gm+u . . . ,gm+n G (£)Esw
such that for all x in K

II* - si L < ^=> ■ ■ ■ ’ I I* - s , L < ^= -

Now, define the function g : K —> C (K , [0, l]m x Rn) as g = (</i,. . . , gm+n),
which is continuous by Lemma 7.4.1 and is in (i /)Esw. We have constructed
g G C (K , [0, l]m x Rn) in such a way that

\ \ t - g \ L = s u p d k w - p w i u
xEK

= sup{||(0 i(re), . . . , (f>q(x)) - (gi(x) , . . . ,gq{x))\\2}
xE K

xEK

= sup
xEK ̂Lz=l

<
i= 1

q • e
< -— = e.

Hence for the given function 0 G C (K , [0, l]m x Rn) and e > 0, we can
approximate <f> within e using g. We therefore conclude (H)^sw is dense in
C(i<:,[0,l]m x R n). ■

7.4.3 The Stone-Weierstrass Over A Normed Vector Space
In addition to attributes of real numbers or tuples of real numbers, it will be
useful to consider spatial objects tha t map points in space to data in a vector
space. We define the vector space algebra as follows, where Tvector are the
vector space axioms listed in Chapter 3.

A lgebra V

Im p o rt R

C arrie rs V

O perations + :V x V - ■+ V
• : R x V - ■+ V

A xiom s 'I'vector

7.4 Extensions of the Stone-Weierstrass Theorem 142

This section proves a density result due to [11] (p.314) for spatial objects in the
set

C(X, V) = { (f) | 0 : X —> V is continuous}

which map points in a compact space X to a set of vectors V.
To approximate such objects, we will of course require a norm function

|| — || : V —> R on C(X,V) . To this end, we will require V to be a normed
vector space (Recall the definition 3.8.19 in Preliminaries Section 3.8.4). Thus
we define

IHI = sup ||v(x)||
xeK

as usual.

7.4.3.1 Continuous Partitions o f U nity

Definition 7.4.3 [H](p. 185j Let X be a topological space and let f be a real­
valued function defined on X . The support of f , denoted Supp(f) , is the small­
est closed set S C X such that f (x) = 0 for all x £ S.

Definition 7.4.4 fllj(p .l86) Given a family (Ai)ieI of subsets of a topological
space X , a family (Ui)i6j of real-valued functions defined on X is said to be
subordinate to the family (Ai)iej if Supp(ui) C Ai for each index i € I.

Definition 7.4.5 fll](p.\86) A continuous partition of unity o n X is any fam ­
ily (fii)i€i of positive real-valued continuous functions on X whose supports
form a locally finite family and are such that Ui{x) = 1 for all points x in
X .

Lemma 7.4.2 Given any open covering (A)ie/ of a paracompact set K there
exists a continuous partition of unity on x, subordinate to the covering
(Aifiei

PROOF This result is proved in [11] (p. 187). ■

The following theorem and proof are due to [11] (p.315).

Theorem 7.4.1 Let K be a compact space, V a normed space over R and H
a subset ofC(K, R). If H is dense in C(K, R), then every continuous function
(f) : X —> V can be uniformly approximated by polynomials of the functions in
H with coefficients in V.

P r o o f Given an e > 0 , for each x € K there exists an open set of x in which
the oscillation1 of the given function (f> is less than e.

lrThe oscillation of a function <j) on a subset A C K is defined as supx
[ll](p.l50) and intuitively means the largest distance between any two points of K

7.4 Extensions of the Stone-Weierstrass Theorem 143

By the compactness of K there exists a finite open covering = {A i , . . . A n}
of K such that the oscillation of (f> in each Ai for 1 < i < n is less than e. In
symbols,

sup ||<j){x) — 4>{y)\\ < e, for 1 < i < n.
x,yeAi

Let aj € V be the value of 4> at a point in Ai, 1 < i < n, and the family
(■Ui) = {u i, . . . , un} is a continuous partition of unity subordinate to the cov­
ering srf (by Lemma 7.4.2), where Ui : X —> R with the following properties:
Let z be any point in K . For every index 1 < i < n, we have

z £ Ai =*> m(z) = 0 ,

^ A i \\4iz) - Hi\\ < (7.9)

Then
n n

W *) - E a*itt(2)|| = || ^ (^ M — ai)ui(z)||, by algebraic properties
2= 1 2=1

€71 71
< — ^ U i(a :) , by Equation 7.9

2= 1

= by Definition 7.4.5.
z

By our assumption, H is dense in Cf i^R) , and so there is a function in H
such that

\Ui(x) - Vi{x) | < - — .. 11
2 n ' | | E j = i ai||

for all x € K and 1 < i < n. Observe that the values 11 11 for 1 < j < n
are all positive real numbers, and so the summation is always positive. By the
triangle inequality,

n n n n

IkW "" ^ IkW “ 5^a<Ui(a:)|| + || ^ a ^ O r) - ^a*v<(a;)||
i —1 i = 1 i —1 i= l

2 = 1 ^ '
II n ||< i + "«l|Ei=iai||

e e
2 + 2

= e.

Thus we have shown that the polynomial &iVi(x) of functions of H
with coefficients of V can approximate (f) to an arbitrary degree of precision,
completing the proof. ■

7.5 Stone-Weierstrass Applied to CVG 144

7.5 Stone-W eierstrass A pplied to CVG
We apply the main result of our work to Constructive Volume Geometry. That
is, for some operations F1?. . . , Fk that implement addition, multiplication and
scalar multiplication and given a set B of basic CVG spatial objects and we
would like to be able to describe (possibly by approximation) all other contin­
uous CVG objects. For us to implement the Stone-Weierstrass Theorem 7.3.2,
we must ensure that B

1 . contains a non-zero constant spatial object,

2. is able to separate the points of E 3.

7.5.1 Volumetric Objects
In practical graphics computing, the objects which we describe must be finite,
in the sense that their visual geometry is defined within some finite region of
E 3.

We say that a scalar field F : E 3 —> S is bounded (compact) if there exists
a bounded (compact) set K C E 3 such that

x e E 3 - K => F(x) = c

where c is a scalar in S. In the case of the opacity scalar field, we set c = 0.
A spatial object is a volumetric object if there is a bounded set K C E 3

such that
x € E 3 - K = > 0 { x) = 0

7.5.2 The 4-Colour Channel Model
We show how the theory of Chapter 7 can be applied to Constructive Volume
Geometry, specifically the 4-Colour Channel Model.

Our space, denoted E 3, is the three dimensional set R 3 equipped with the
Euclidean metric, defined as

\ x - y \ = \J {x i - yi)2 + (x2 - y2f + - y z f

for points x, y in E 3. We generally refer to E 3 as the Euclidean space.
We define a norm on the set of attributes Opacity, Red, Green and Blue by

||z | | 2 = y j (z0)2 + (zr)2 + (Zgf + (zb)2

where z = (z0, zr,zg, z5) is a vector in the attribute space [0,1] x R3.
Thus we are able to define the set

^ (£ 4cc) Q 0 (^ 4CC)

7.5 Stone-Weierstrass Applied to CVG 145

to be the set of all continuous CVG spatial objects mapping points in the
Euclidean space E 3 to points in the attribute space [0,1] x R3.

We define an algebra Asw which contains the necessary operations for
the Stone-Weierstrass Theorem. Each operation is pointwise lifted from the
operations on the unit interval [0,1] or the real numbers R.

A lgebra As1aw

Im p o rt Aso

C arriers K = [a, b]3 C E 3, C(K, [0,1]), C{K, R)

O perations
+ / : C(K, [0,1]) x C(K, [0,1]) -* C(K, [0,1])
X/ : C (K , [0,1]) x C{K, [0,1]) - C(K, [0,1])
•/ : [0,1] x C(K, [0,1]) [0,1])

+ : C(K, R) x C(K, R) -+ C(tf ,R)
x : C(K, R) x C(K, R) -> C(K, R)
• : R x C (K , R) - > C (K , R)

We define a signature which incorporates the Stone-Weierstrass operations
and the operations on the CVG spatial objects. The carrier set will be a subset
of 0 (E4 CC); namely the continuous CVG volumetric objects

n ^ c c) .

We need our CVG objects to be specified within some bounded region
[—n, n] of E 3 for n > 1, since we will be applying the Stone-Weierstrass Theo­
rem. The algebra and signature are defined as follows:

S ignatu re K'SWAcc

Im p o rt ^ 4 ccj Etaw

Sorts C(E 4 cc) C 0(E4cc)

7.5 Stone-Weierstrass Applied to CVG 146

A lgebra A aw
^ 4 cc

Im p o rt AA A-ra4cc) sw

C arriers ^ (E 4 cc)

Now we need some set B of basic spatial objects tha t contain a non-zero
constant object, and one that separates the points of E 3. The constant function
will simply be for every z € E 3

o{z) = (1 , 1 , 1 , 1)

which has the constant value 1 for each data attribute of Opacity, Red, Green
and Blue.

To separate the points of E 3, the user of CVG has many possibilities. Let
z = (xi ,X2 ,X3) be a point in E 3. We could have, for example, the function

0(2) = (I T 7 P W W ' X1’*2’X3)-

This particular separating is rather strong. The user of our CVG framework
need only guarantee that for any unique points zj=-z' there is a function such
that 4>(z) 7 ̂4>{z'), and so we could have many functions to separate the points,
instead of just a single function2.

We can use Corollary 7.4.2 for the CVG spatial objects in ^ (E 4cc):

C orollary 7.5.1 Let [—n, n] 3 be a closed and bounded cube of E 3, n > 1 and
^ (E 4cc) the collection of continuous CVG spatial objects. I f B C ^ (E 4cc)

• separates the points of space [—n, n]3,

• contains a non-zero constant spatial object,

then using the E^-operations on the CVG spatial objects in B we can ap­
proximate all CVG objects in ^ (E ^ c) to any degree of precision, w.r.t the sup
norm.

2The problem of selecting basic spatial objects and separating functions is important
in CVG. We give a statement of this and related CVG problems that remain open in the
concluding remarks of the thesis.

7.6 Adequacy 147

7.6 Adequacy
We have seen that the operations of addition, multiplication, scalar multipli­
cation were required in the proof of Theorem 7.3.2. In fact, we can use any
signature

E = (E; Data , SO; F i , . . . , F*)

such that the necessary E 5 w-operations are E-term definable, i.e. expressible
by the terms in T(E, Y) , where Y is a set of variables. Specifically, by Definition
4.3.5, this means that for a E-algebra A, the operation -1- : A x A —> A is E-term
definable if there exists a term s(y i, y2) € T(E, Y) such tha t for all ai, <22 € A

ai + a2 = [s(yi, y2)]U(ai, a2),

and similarly for the other Esw operations.

C orollary 7.6.1 Let C(K, R) be the set of all continuous spatial objects where
K is a compact space. Define the signature

E = (E; D ata , SO; Fx, . . . , F^)

such that the operations + , x and • are E -definable. Then for any subset
B C C (F , R) which

1. separates points in K , and

2. contains a non-zero constant spatial object,

the E -subalgebra (B) Esw is dense in C(K, R).

P r o o f Suppose that the operations + , x and • are E-term definable. Then
by Definition 4.3.5 there exists terms s(yi ,y2), t(yi, y2) and r (y\ , y2) in T(E, Y)
such that

+ (0 1 , = [s (2 / l , J/2)] c W I) (0 1 j 0 2) j

X(0 1 , 0 2) = [^(2/1 , 2/2)]c(/C,K)(0 1 , 0 2),
•(A,02) = [r(yi,y2)]c(A:,R)(A,02).

for all 0i, 0 2 € C (F ,R) and A G R. Define a E'5vr-algebra

7.7 Dense subsets of C(X, R) , X non-compact 148

A lgebra Asw

Im p o rt R

C arrie rs K , B

O perations
+ : C(K, R) x C{K, R) -> C ^ R)
x : C(K, R) x C (^ ,R) -> C(RT,R)
• : R x C(K, R) —► R)

D efinitions +(<£ i, </>2) = [5 (7/1 , t/2)]c(x,a)(0 i, fa)
><(^1 , ^ 2) = [£ (y i > y 2)] c (K , R) (^ i , 0 2)

•(A, 0 2) = [t'Cz/i, 2/2)]o(at,r) (A, 02)

containing the imported data set R, carriers K and B C (7(1^, R) of spatial
objects satisfying conditions 1 and 2 of the Theorem and the new operations
based on the evaluation of E-terms s, t and r. By the Stone-Weierstrass The­
orem 7.3.2 (B')x>sw is dense in C(K, R) and furthermore, by Lemma 4.3.3

{ 0) e „ C (B)s

and therefore (B)e dense in C(K, R). ■

7.7 Dense subsets of C (X , R), X non-com pact
The Stone-Weierstrass Theorem shows that, assuming certain properties of the
set B containing the basic spatial objects, (B)-zsw is dense in C(X, R) when
A is a compact space.

We would like to approximate objects over non-compact spaces. Take for
example X = E 3: can we find a dense subset of ^ (E 3, R3)? The answer is
yes, and we use the theory developed in Chapter 6 to formulate and prove this
result.

7.7.1 Homomorphisms and the Inverse Limit
Recalling the inverse limit construction of the previous chapter, we defined an
inverse limit on the family R) using the directed set of all compact
subspaces of X and showed that the compact-open topology behaves “the
same” on l i m C (R) as it does on C(X, R). This was achieved in Theorem
6 .8 . 1 by showing there exists a homeomorphism mapping the inverse limit

7.7 Dense subsets of C(X, R), X non-compact 149

element (/) to the union of all restricted functions \JKeJr / # : X —> R. We
will use its inverse

$: C(X,R) - ^ l im C (X , R)

where $ (/) = (/) maps a function / to a sequence (/) in the inverse limit
where f\K = (f)(K). That is, each coordinate K of the element (/) is the
restricted function f\K to C(K, R). Now consider a function

: C (X , R) ^ C (X , R)

defined by the composition $ k — {<I>k ° $) where 0 ^ is the homomorphic pro­
jection from the inverse limit to the coordinate space C(K, R). This function
is simply a restriction function restricting functions in C (X , R) to C (K , R) and
is clearly a homomorphism since it is the composition of homomorphisms. We
display <&k &s a commutative diagram in Figure 7.3.

C(X, l im C p f ,

Figure 7.3: A homomorphism from C (X , R) to C(X,

7.7.2 Approximation on C(X, R), X non-compact
Now R will be a topological E^^-algebra of the real numbers with the Stone-
Weierstrass operations as specified by T,sw- We shall use &k to prove a density
result for C(X, R) when X is not compact.

Our first concern is how the basic spatial objects satisfying the necessary
conditions for the Stone-Weierstrass Theorem behave under the map <&k - Re­
call the properties a set jB = {6 i, must satisfy for the Stone-Weierstrass
Theorem axe

1 . separating the points of space X ,

2 . containing a non-zero constant spatial object,

and we must show that the map $ k preserves these properties.
Clearly if a function 6 * 6 C(X, R) is constant, then it must be constant

on a restriction bi\K to a subset K of X . Therefore preserves constant
functions. Furthermore, if the functions &i,. . . , bn separates points of X then

7.7 Dense subsets o f C(X, R), X non-compact 150

we can observe that the restrictions bi \k , . . . , bn\K separate points of the subset
K of X . To summarize, we make the following observation:

Observation 7.7.1 If B satisfies Properties 1 and 2 on C(X, R), then $k{B)
satisfies these properties on the space C(K, R), where K C X .

Bearing this in mind, we turn to the main result of this section:

Theorem 7.7.1 (Approximation Theorem for Spatial O bjects) Let X
be a topological space and C(X, R) the collection of continuous total spatial
objects with the compact-open topology. I f B = {bi , . . . ,bn} is a, subset of
C(X,M) which

1. separates the points of space X ,

2. contains a non-zero constant spatial object,

then the Hsw-subalgebra (B)zsw generated by repeated application of T>sw~
operations on the spatial objects in B is dense in C(X,M).

P r o o f Choose any basic open set W(K, U) of the compact-open topology on
C(X,R). We show that (B)nsw D W(K, U) ^ 0.

For the given compact K C X, we have the homomorphism &k and by
Observation 7.7.1 the set $ k{ B) satisfies Properties 1 and 2 on C(K, R). By
the Stone-Weierstrass Theorem 7.3.2 we conclude

W (K , U) n ($ K(B))xs w ytl!)

on C(K, R). This means that there is a term t E {$k {B))esw such that when
evaluated on C (K , R) yields a function

W c (p) (^ W) • • •, ^ k {k))

in W (K , U) for the basic spatial objects b\ , . . . , bn in B restricted to K by $ k -
But the homomorphic properties of gives the equation

- = $at(M|c(x,r)(&i, • • • ,K))-

This equation means tha t the term t is evaluated to the same points in
C(X, R). That is, p]c(x,R)[^] C U and hence is a spatial object in W (K , U),
completing the proof. ■

The reader should note that the sup norm on C(X, R) may not be defined.
However, when we are approximating, we are approximating locally. That is,
on some compact subspace K of A. Therefore, we are able to meaningfully
use the Stone-Weierstrass Theorem.

7.8 Notes and Sources 151

7.8 N otes and Sources
The Stone-Weierstrass Theorem is an important topological result and gives
conditions necessary for a set to be dense in C (K , R). Thus it is a natural tool
for us to answer the expressiveness and completeness problem.

Simmons [52] gives a version of the original Weierstrass Theorem for real
valued functions which shows that special polynomials called Bernstein Polyno­
mials can be used to approximate any continuous real valued function defined
on a closed interval to an arbitrary degree of accuracy.

The full Stone-Weierstrass Theorem is given in Simmons which approxi­
mates real valued functions on a compact Hausdorff space X using the prop­
erties of lattices and this is the approach I have used for my thesis. Other
approaches to the Stone-Weierstrass Theorem are found in Kelley [36] and
Dugundji [26].

The Stone-Weierstrass Theorem is extended in my thesis to the case of func­
tions that return n-tuples of real numbers [47], functions on the unit interval,
and functions that are of the type / : X —» [0, l]m x Rn.

Bourbaki [11] gives a Stone-Weierstrass result for which functions are of the
form / : X —» V, where V is a normed vector space. This result is particularly
useful for Constructive Volume Geometry, where the CVG spatial objects map
points in E 3 to data that contains a function to describe a physical phenomenon
at each point in the space, such as reflection.

Chapter 8

Conclusion

This thesis provides a mathematical foundation for the theory of spatial data
types. A framework was defined which mathematically models spatial objects
by total functions. Such an approach was shown to be useful in many situations.
The example we have focused on in this work is Constructive Volume Geometry.
An algebraic framework for the specification of CVG objects and operations
was defined, and we specified some particularly useful classes of CVG objects.

Spatial objects were shown to be a helpful tool in defining models of com­
putation. An abstract machine model was developed which executed programs
over a E-algebra A storing values in a set R of registers. Then the set of all
register configurations was simply F (R , A), the set of spatial objects where the
data A is distributed in the space R.

The value of studying these examples is that both are vastly different ap­
plications, but share the same underlying mathematical theory. That is, our
mathematical theory of spatial data types can unify continuous and discrete
space. In particular, the space we used in CVG is three dimensional Euclidean
space E 3 which is continuous and rather complicated compared to the discrete
space R of registers we used in the machine example. Both are handled under
the same theory.

We solved a general completeness problem for continuous spatial objects in
C(X,A) , containing all functions mapping a topological space A to a topolog­
ical space/algebra A. We considered the subalgebra (B)^sw generated by the
application of some E-operations on basic spatial objects in B. This set was
enough to generate all spatial objects of interest, possibly by approximation.

Our method of approximation is the Stone-Weierstrass Theorem, a result
from classical analysis. We modified this result and used it to show that (B)xsw
is dense in C(X, A). That is, for any spatial object in C (X , A), there is a spatial
object in (B)Ssw arbitrary close to it. The benefits of such a result is that for
a given spatial object, we can construct a term such tha t when evaluated,
approximated the given object to an arbitrary degree of accuracy. This result
has a strong impact on a theory of computation for spatial objects and we

152

8.1 Possible Directions 153

discuss this in the next section.

8.1 Possible Directions
The demands of our general theory has led us to look for general results of
wide applicability. A number of areas are of immediate interest:

C onstructive Volume G eom etry

Constructive Volume Geometry is an algebraic framework for the specification,
representation and manipulation of graphical objects in three dimensions. The
area is a rich source of theoretical problems in its own right. For example, we
need to find a finite set of operations E on some set B of basic CVG objects
that can generate a set (-B)e which was suitable to approximate any CVG
object. These CVG operations must be chosen carefully in a way tha t they are
reasonable to the computer graphics community and are suitable to be used in
this application domain.

A rigorous reformulation of Constructive Volume Geometry, adhering to
the strict mathematical formalism of this thesis, may generate a number of
interesting problems, for example, the development of a theoretical rendering
process. That is, study maps of the type

r : F (E 3, A) —► F(Z 2, A)

and find algebraic structures such that r can be defined by structural induc­
tion. Also of interest is the method of digitisation of continuous data from
medical devices (such as Computerised Tomography (CT) scanners). Such a
transformation can be modelled algebraically by a mapping

D : C { E \ R) - + C { Z 2,Z)

from the set of functions in continuous space E 3 to functions in discrete space
Z2. This involves both a translation d\ : E 3 —► Z 2 of the space and a translation
d2 : R —> Z of the data.

C om putab ility

A theory of computation for programming with spatial objects is still very
much in its preliminary stages. Spatial objects are an example a continuous
data type. They are modelled by topological algebras with primitive operations
that are continuous on the data on which they are defined.

Broadly speaking, there are two models of computation to consider:

• Abstract models are high-level programming models which do not depend
on the specific data representation of the E-algebra A. Computations are

8.1 Possible Directions 154

uniform over all E-algebras. Once we have chosen some data and opera­
tions on that data, we are able to compute with programs. Such models
include the While programming language [59] or the SERM programming
language of Chapter 5.

• Concrete models are models in which computations are dependent on the
representation of the data over which we are computing. There are many-
such models computing on the real numbers. An excellent overview of
some common models is found in [53].

In either model computation over spatial objects will not be exact, and
so one must consider methods of approximation. Further research will con­
sider various methods of approximation. We aim to control and compare such
methods.

Now, we have used Stone-Weierstrass Theorem extensively in this work to
approximate spatial objects. An important consideration is the computational
aspects of this theorem as a way to extend and further the computability and
complexity properties of spatial data types. We could consider an effective
version of the Stone-Weierstrass Theorem: Given a spatial object 4> : K —> R
and an error margin e > 0 we would like to compute a term t G T(E, Y) such
that

||<f) - [£(6i , . . . , bn)]C(K,R) 11̂ < e

for the basic spatial objects &i,. . . , bn. Of particular interest is the constructive
Stone-Weierstrasg Theorem of Bishop and Bridges [8]. Such a result will be
useful for the general theory of spatial objects and to the application of CVG.
Furthermore, it is important to study different methods of Stone-Weierstrass
to show the impact on results we have developed in this thesis.

Specification
Spatial objects are higher-order objects, and although we have used the alge­
braic theory of data types, our main task has been to add topologies and con­
sider approximation and computability. We have not considered the axiomatic
specification theory. Algebras of spatial objects are higher order algebras and
the algebraic specification theory is an advanced and fascinating topic.

It might be interesting to develop a higher order algebraic specification
theory of

1 . Spatial object algebras in general,

2 . CVG algebras in particular.

The basic theory of high-order algebras has been worked out by [40] and some
interesting work that has been done for specifying hardware includes [54].

Bibliography

[1] A. Abdul-Rahman. Physically-Based Rendering and Algebraic Manipula­
tion of Volume Models. PhD thesis, University of Wales, Swansea, 2006.

[2] A. Abdul-Rahman and M. Chen. Spectral volume rendering based on the
Kubelka-Munk theory. Computer Graphics Forum, 24(3):413-422, 2005.

[3] R. F. Arens. A topology for spaces of transformations. Annals of Mathe­
matics, 47(3):480-495, 1946.

[4] R. F. Arens and J. L. Kelley. Characterizations of the space of continuous
functions over a compact Hausdorff space. Transactions of the American
Mathematical Society, 82(3):499—508, 1947.

[5] J. P. Aubin. Applied Abstract Analysis. John Wiley Sz Sons, 1977.

[6] M. P. Backer and D. Hearn. Computer Graphics C Version. Prentice Hall
International, international edition, 1997.

[7] B. Banaschewski and C. J. Mulvey. A constructive proof of the Stone-
Weierstrass theorem. Journal of Pure and Applied Algebra, 116:25-40,
1997.

[8] E. Bishop and D. Bridges. Constructive Analysis. Springer-Verlag, 1985.

[9] J. Blanck, V. Stoltenberg-Hansen, and J. V. Tucker. Domain represen­
tations of partial functions, with applications to spatial objects and con­
structive volume geometry. Theoretical Computer Science, 284:207-224,
2002 .

[10] N. J. Bloch. Abstract Algebra with Applications. Prentice-Hall,, Englewood
Cliffs, New Jersey, 1987.

[1 1] N. Bourbaki. General Topology Part 1 and 2. Springer, 1966.

[1 2] D. S. Bridges. Computability: A Mathematical Sketchbook. Springer-
Verlag, New York, 1994.

155

BIBLIOGRAPHY 156

13] C. W. Burrill. Foundations of Real Numbers. McGraw-Hill, New York,
1967.

14] M. Chen, A. E. Kaufman, and R. Yagel, editors. Volume Graphics.
Springer, London, 2000.

15] M. Chen and A. Leu. Direct rendering algorithms for complex volumetric
scenes. Proc. 16th Eurographics UK Conference, Leeds, pages 1-15, 1998.

16] M. Chen and A. Leu. Modelling and rendering graphics scenes composed
of multiple volumetric datasets. Computer Graphics Forum, 18(2):159—
171, 1999.

17] M. Chen, D. Rodgman, A. S. Winter, and S. M. F. Treavett. Enriching
volume modelling with scalar fields. Data Visualization: the State of the
Art, pages 345-362, 2003.

18] M. Chen and J. V. Tucker. Constructive volume geometry. Technical
report, University of Wales, Swansea, 1998.

19] M. Chen and J. V. Tucker. Constructive volume geometry. Computer
Graphics Forum, 19(4):281—293, 2 0 0 0 .

20] M. Chen, J. V. Tucker, and A. Leu. Trove - a rendering system for con­
structive representations of volumetric environments. In M. Chen, A. E.
Kaufman, and R. Yagel, editors, Volume Graphics, chapter 6 . Springer,
2000 .

21] M. Chen and A. S. Winter, vlib: A volume graphics API. In Mueller and
A. E. Kaufman, editors, Volume Graphics, pages 133-147. Springer, 2001.

2 2] H. F. Cullen. Introduction to General Topology. D.C. Heath and Company,
Boston, 1968.

23] N. J. Cutland. Computability, An Introduction to Recursive Function
Theory. Cambridge University Press, Cambridge, 1980.

24] B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cam­
bridge University Press, Cambridge, 1990.

25] L. Debnathm and P. Mikusiriski. Introduction to Hilbert Spaces with Ap­
plications. Academic Press, San Diego, California, second edition, 1999.

26] J. Dugundji. Topology. Allyn and Bacon Inc., Boston-London-Sydney-
Toronto, 1966.

27] R. Engelking. General Topology. Heldermann Verlag, Germany, 1989.

BIBLIOGRAPHY 157

[28] J. D. Foley. Computer Graphics: Principles and Practices. Addison-
Wesley, second edition, 1997.

[29] H. Friedman. Algorithmic procedures, generalized Turing algorithms, and
elementary recursion theory. In Logic Colloquium ’69, pages 361-389.
North-Holland, 1971.

[30] S. A. Gaal. Point Set Topology. Academic Press, New York, 1964.

[31] G. Y. Gardner. Simulation of natural scenes using textured quadric sur­
faces. ACM/SIGGRAPH Computer Graphics, 18(3): 11-20, 1984.

[32] G. Gratzer. Universal Algebra. D. Van Nostrand Company Inc., Princeton,
New Jersey, 1968.

[33] G. Gratzer. Universal Algebra. Springer-Verlag, Berlin, second edition,
1979.

[34] K. Hoffman. Analysis in Euclidean Space. Prentice Hall, Inc., Englewood
Cliffs, New Jersey, 1975.

[35] K. Johnson. The theory of spatial data types and constructive volume ge­
ometry. In Bulletin of the European Association for Theoretical Computer
Science, volume 89, page 198, 2006.

[36] J, L, Kelley, General Topology. Springer-Verlag, New York, 1975.

[37] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics
and Applications, 8(3):29—37, May 1988.

[38] M. Mansfield. Introduction to Topology. D. Van Nostrand Company Inc.,
Princeton, New Jersey, 1966.

[39] N. H. McCoy. Rings and Ideals. The Mathematical Association of America,
1948.

[40] K. Meinke. Universal algebra in higher types. Theoretical Computer Sci­
ence, 100:385-417, 1992.

[41] K. Meinke. Topological methods for algebraic specification. Theoretical
Computer Science, 166:263-290, 1996.

[42] K. Meinke and J. Steggles. Specification and verification in higher order
algebra: A case study of convolution. In J. Heering, K. Meinke, B. Moller,
and T. Nipkow, editors, Higher Order Algebra, Logic and Term Rewriting,
Lecture Notes in Computer Science, volume 816, pages 189-222. Springer-
Verlag, 1994.

BIBLIOGRAPHY 158

[43] K. Meinke and J. V. Tucker. Universal Algebra, pages 189-411. Handbook
of Logic for Computer Science. Oxford University Press, Oxford, 1992.

[44] C. B. Morrey and M. H. Protter. A First Course in Real Analysis.
Springer-Verlag, New York, 1977.

[45] J. Myhill. A complete theory of natural, rational, and real numbers. The
Journal of Symbolic Logic, 15(3):185—196, 1950.

[46] J. Myhill. What is a real number? The American Mathematical Monthly,
79(7) :748—754, 1972.

[47] G. L. Naber. Topological Methods in Euclidean Spaces. Cambridge Uni­
versity Press, Cambridge, 1980.

[48] T. Porter and T. Duff. Compositing digital images. In SIGGRAPH ’84:
Proceedings of the 11th annual conference on Computer graphics and in­
teractive techniques, pages 253-259, New York, NY, USA, 1984. ACM
Press.

[49] A. A. G. Requicha. Mathematical models of rigid solid objects. Technical
Report 28, University of Rochester, Rochester, New York, November 1977.

[50] A. A. G. Requicha. Representations for rigid solids: Theory, methods,
and systems. Computing Surveys, 12(4)-.437-464, December 1980.

[51] H. Schubert. Topology. Macdonald Technical Sz Scientific, London, 1968.

[52] G. F. Simmons. Introduction to Topology and Modem Analysis. Krieger
Publishing Company, Malabae, Florida, 1983.

[53] D. Spreen. On some problems in computable topology. In Logic Collo­
quium ’05, Lecture Notes in Logic, volume 28. Association for Symbolic
Logic, 2007. to appear.

[54] L. J. Steggles. Verifying an infinite systolic algorithm using third-order
equational methods. Journal of Algebraic and Logic Programming, 69(1-
2):75—92, 2006.

[55] K. Stephenson and J. V. Tucker. Data, syntax, and semantics, an introduc­
tion to modelling programming languages. University of Wales, Swansea,
to appear.

[56] V. Stoltenberg-Hansen and J. V. Tucker. Algebraic and fixed point
equations over inverse limits of algebras. Theoretical Computer Science,
87(1):1—24, 1991.

BIBLIOGRAPHY 159

[57] V. Stoltenberg-Hansen and J. V. Tucker. Concrete models of computation
for topological algebras. Theoretical Computer Science, 219(l-2):347-378,
1999.

[58] M. H. Stone. The generalized Weierstrass approximation theorem. Math­
ematics Magazine, 21 (4): 167-184, 1948.

[59] J. V. Tucker and J. I. Zucker. Computable functions and semicomputable
sets on many sorted algebras, volume 5 of Handbook of Logic for Computer
Science, pages 317-523. Oxford University Press, Oxford, 1998.

[60] J. V. Tucker and J. I. Zucker. Computation by while programs on topo­
logical partial algebras. Theoretical Computer Science, 219(1-2):379-420,
1999.

[61] J. V. Tucker and J. I. Zucker. Abstract versus concrete computation on
metric partial algebras. ACM Transactions on Computer Logic, 5(4):611-
6 6 8 , 2004.

[62] J. V. Tucker and J. I. Zucker. Computable total functions, algebraic speci­
fications and dynamical systems. Journal of Algebraic and Logic Program­
ming, 62:71-108, 2005.

[63] J. V. Tucker and J. I. Zucker. Abstract versus concrete computability:
The case of countable algebras. In V. Stoltenberg-Hansen and J. Vnnen,
editors, Logic Colloquium ’03, Proceedings of the Annual European Sum­
mer Meeting of the Association for Symbolic Logic, Helsinki, August 2003,
number 24 in Lecture Notes in Logic, pages 377-408, 2006.

[64] W. Wechler. Universal Algebra for Computer Scientists. EATCS Mono­
graphs on Theoretical Computer Science. Springer, Berlin, 1992.

[65] K. Weihrauch. Computable Analysis, an Introduction. Springer, 2000.

