566 research outputs found

    Hashing based Answer Selection

    Full text link
    Answer selection is an important subtask of question answering (QA), where deep models usually achieve better performance. Most deep models adopt question-answer interaction mechanisms, such as attention, to get vector representations for answers. When these interaction based deep models are deployed for online prediction, the representations of all answers need to be recalculated for each question. This procedure is time-consuming for deep models with complex encoders like BERT which usually have better accuracy than simple encoders. One possible solution is to store the matrix representation (encoder output) of each answer in memory to avoid recalculation. But this will bring large memory cost. In this paper, we propose a novel method, called hashing based answer selection (HAS), to tackle this problem. HAS adopts a hashing strategy to learn a binary matrix representation for each answer, which can dramatically reduce the memory cost for storing the matrix representations of answers. Hence, HAS can adopt complex encoders like BERT in the model, but the online prediction of HAS is still fast with a low memory cost. Experimental results on three popular answer selection datasets show that HAS can outperform existing models to achieve state-of-the-art performance

    Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach

    Get PDF
    Transformer-based models have been utilized in natural language processing (NLP) for a wide variety of tasks like summarization, translation, and conversational agents. These models can capture long-term dependencies within the input, so they have significantly more representational capabilities than Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). Nevertheless, these models require significant computational resources in terms of high memory usage, and extensive training time. In this paper, we propose a novel document categorization model, with improved parameter efficiency that encodes text using a single, lightweight, multiheaded attention encoder block. The model also uses a hybrid word and position embedding to represent input tokens. The proposed model is evaluated for the Scientific Literature Classification task (SLC) and is compared with state-of-the-art models that have previously been applied to the task. Ten datasets of varying sizes and class distributions have been employed in the experiments. The proposed model shows significant performance improvements, with a high level of efficiency in terms of parameter and computation resource requirements as compared to other transformer-based models, and outperforms previously used methods

    Interpretable Architectures and Algorithms for Natural Language Processing

    Get PDF
    Paper V is excluded from the dissertation with respect to copyright.This thesis has two parts: Firstly, we introduce the human level-interpretable models using Tsetlin Machine (TM) for NLP tasks. Secondly, we present an interpretable model using DNNs. The first part combines several architectures of various NLP tasks using TM along with its robustness. We use this model to propose logic-based text classification. We start with basic Word Sense Disambiguation (WSD), where we employ TM to design novel interpretation techniques using the frequency of words in the clause. We then tackle a new problem in NLP, i.e., aspect-based text classification using a novel feature engineering for TM. Since TM operates on Boolean features, it relies on Bag-of-Words (BOW), making it difficult to use pre-trained word embedding like Glove, word2vec, and fasttext. Hence, we designed a Glove embedded TM to significantly enhance the model’s performance. In addition to this, NLP models are sensitive to distribution bias because of spurious correlations. Hence we employ TM to design a robust text classification against spurious correlations. The second part of the thesis consists interpretable model using DNN where we design a simple solution for complex position dependent NLP task. Since TM’s interpretability comes with the cost of performance, we propose an DNN-based architecture using a masking scheme on LSTM/GRU based models that ease the interpretation for humans using the attention mechanism. At last, we take the advantages of both models and design an ensemble model by integrating TM’s interpretable information into DNN for better visualization of attention weights. Our proposed model can be efficiently integrated to have a fully explainable model for NLP that assists trustable AI. Overall, our model shows excellent results and interpretation in several open-sourced NLP datasets. Thus, we believe that by combining the novel interpretation of TM, the masking technique in the neural network, and the integrated ensemble model, we can build a simple yet effective platform for explainable NLP applications wherever necessary.publishedVersio

    Enhancing natural language understanding using meaning representation and deep learning

    Get PDF
    Natural Language Understanding (NLU) is one of the complex tasks in artificial intelligence. Machine learning was introduced to address the complex and dynamic nature of natural language. Deep learning gained popularity within the NLU community due to its capability of learning features directly from data, as well as learning from the dynamic nature of natural language. Furthermore, deep learning has shown to be able to learn the hidden feature(s) automatically and outperform most of the other machine learning approaches for NLU. Deep learning models require natural language inputs to be converted to vectors (word embedding). Word2Vec and GloVe are word embeddings which are designed to capture the analogy context-based statistics and provide lexical relations on words. Using the context-based statistical approach does not capture the prior knowledge required to understand language combined with words. Although a deep learning model receives word embedding, language understanding requires Reasoning, Attention and Memory (RAM). RAM are key factors in understanding language. Current deep learning models focus either on reasoning, attention or memory. In order to properly understand a language however, all three factors of RAM should be considered. Also, a language normally has a long sequence. This long sequence creates dependencies which are required in order to understand a language. However, current deep learning models, which are developed to hold longer sequences, either forget or get affected by the vanishing or exploding gradient descent. In this thesis, these three main areas are of focus. A word embedding technique, which integrates analogy context-based statistical and semantic relationships, as well as extracts from a knowledge base to hold enhanced meaning representation, is introduced. Also, a Long Short-Term Reinforced Memory (LSTRM) network is introduced. This addresses RAM and is validated by testing on question answering data sets which require RAM. Finally, a Long Term Memory Network (LTM) is introduced to address language modelling. Good language modelling requires learning from long sequences. Therefore, this thesis demonstrates that integrating semantic knowledge and a knowledge base generates enhanced meaning and deep learning models that are capable of achieving RAM and long-term dependencies so as to improve the capability of NLU

    Non-Autoregressive Machine Translation with Auxiliary Regularization

    Full text link
    As a new neural machine translation approach, Non-Autoregressive machine Translation (NAT) has attracted attention recently due to its high efficiency in inference. However, the high efficiency has come at the cost of not capturing the sequential dependency on the target side of translation, which causes NAT to suffer from two kinds of translation errors: 1) repeated translations (due to indistinguishable adjacent decoder hidden states), and 2) incomplete translations (due to incomplete transfer of source side information via the decoder hidden states). In this paper, we propose to address these two problems by improving the quality of decoder hidden representations via two auxiliary regularization terms in the training process of an NAT model. First, to make the hidden states more distinguishable, we regularize the similarity between consecutive hidden states based on the corresponding target tokens. Second, to force the hidden states to contain all the information in the source sentence, we leverage the dual nature of translation tasks (e.g., English to German and German to English) and minimize a backward reconstruction error to ensure that the hidden states of the NAT decoder are able to recover the source side sentence. Extensive experiments conducted on several benchmark datasets show that both regularization strategies are effective and can alleviate the issues of repeated translations and incomplete translations in NAT models. The accuracy of NAT models is therefore improved significantly over the state-of-the-art NAT models with even better efficiency for inference.Comment: AAAI 201
    • …
    corecore