105,198 research outputs found

    On the Reverse Engineering of the Citadel Botnet

    Get PDF
    Citadel is an advanced information-stealing malware which targets financial information. This malware poses a real threat against the confidentiality and integrity of personal and business data. A joint operation was recently conducted by the FBI and the Microsoft Digital Crimes Unit in order to take down Citadel command-and-control servers. The operation caused some disruption in the botnet but has not stopped it completely. Due to the complex structure and advanced anti-reverse engineering techniques, the Citadel malware analysis process is both challenging and time-consuming. This allows cyber criminals to carry on with their attacks while the analysis is still in progress. In this paper, we present the results of the Citadel reverse engineering and provide additional insight into the functionality, inner workings, and open source components of the malware. In order to accelerate the reverse engineering process, we propose a clone-based analysis methodology. Citadel is an offspring of a previously analyzed malware called Zeus; thus, using the former as a reference, we can measure and quantify the similarities and differences of the new variant. Two types of code analysis techniques are provided in the methodology, namely assembly to source code matching and binary clone detection. The methodology can help reduce the number of functions requiring manual analysis. The analysis results prove that the approach is promising in Citadel malware analysis. Furthermore, the same approach is applicable to similar malware analysis scenarios.Comment: 10 pages, 17 figures. This is an updated / edited version of a paper appeared in FPS 201

    From Query to Usable Code: An Analysis of Stack Overflow Code Snippets

    Full text link
    Enriched by natural language texts, Stack Overflow code snippets are an invaluable code-centric knowledge base of small units of source code. Besides being useful for software developers, these annotated snippets can potentially serve as the basis for automated tools that provide working code solutions to specific natural language queries. With the goal of developing automated tools with the Stack Overflow snippets and surrounding text, this paper investigates the following questions: (1) How usable are the Stack Overflow code snippets? and (2) When using text search engines for matching on the natural language questions and answers around the snippets, what percentage of the top results contain usable code snippets? A total of 3M code snippets are analyzed across four languages: C\#, Java, JavaScript, and Python. Python and JavaScript proved to be the languages for which the most code snippets are usable. Conversely, Java and C\# proved to be the languages with the lowest usability rate. Further qualitative analysis on usable Python snippets shows the characteristics of the answers that solve the original question. Finally, we use Google search to investigate the alignment of usability and the natural language annotations around code snippets, and explore how to make snippets in Stack Overflow an adequate base for future automatic program generation.Comment: 13th IEEE/ACM International Conference on Mining Software Repositories, 11 page

    trackr: A Framework for Enhancing Discoverability and Reproducibility of Data Visualizations and Other Artifacts in R

    Full text link
    Research is an incremental, iterative process, with new results relying and building upon previous ones. Scientists need to find, retrieve, understand, and verify results in order to confidently extend them, even when the results are their own. We present the trackr framework for organizing, automatically annotating, discovering, and retrieving results. We identify sources of automatically extractable metadata for computational results, and we define an extensible system for organizing, annotating, and searching for results based on these and other metadata. We present an open-source implementation of these concepts for plots, computational artifacts, and woven dynamic reports generated in the R statistical computing language

    SmartUnit: Empirical Evaluations for Automated Unit Testing of Embedded Software in Industry

    Full text link
    In this paper, we aim at the automated unit coverage-based testing for embedded software. To achieve the goal, by analyzing the industrial requirements and our previous work on automated unit testing tool CAUT, we rebuild a new tool, SmartUnit, to solve the engineering requirements that take place in our partner companies. SmartUnit is a dynamic symbolic execution implementation, which supports statement, branch, boundary value and MC/DC coverage. SmartUnit has been used to test more than one million lines of code in real projects. For confidentiality motives, we select three in-house real projects for the empirical evaluations. We also carry out our evaluations on two open source database projects, SQLite and PostgreSQL, to test the scalability of our tool since the scale of the embedded software project is mostly not large, 5K-50K lines of code on average. From our experimental results, in general, more than 90% of functions in commercial embedded software achieve 100% statement, branch, MC/DC coverage, more than 80% of functions in SQLite achieve 100% MC/DC coverage, and more than 60% of functions in PostgreSQL achieve 100% MC/DC coverage. Moreover, SmartUnit is able to find the runtime exceptions at the unit testing level. We also have reported exceptions like array index out of bounds and divided-by-zero in SQLite. Furthermore, we analyze the reasons of low coverage in automated unit testing in our setting and give a survey on the situation of manual unit testing with respect to automated unit testing in industry.Comment: In Proceedings of 40th International Conference on Software Engineering: Software Engineering in Practice Track, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE-SEIP '18), 10 page
    • …
    corecore