5 research outputs found

    A framework for the development of biomedical text mining software tools

    Get PDF
    Over the last few years, a growing number of techniques has been successfully proposed to tackle diverse challenges in the Biomedical Text Mining (BioTM) arena. However, the set of available software tools to researchers has not grown in a similar way. This work makes a contribution to close this gap, proposing a framework to ease the development of user-friendly and interoperable applications in this field, based on a set of available modular components. These modules can be connected in diverse ways to create applications that fit distinct user roles. Also, developers of new algorithms have a framework that allows them to easily integrate their implementations with state-of-the-art BioTM software for related tasks.This work was supported in part by the research projects recSysBio (ref. POCI/BIO/60139/2004) and MOBioPro (ref. POSC/EW59899/2004) of the University of Minho, financed by the Portuguese Fundaao para a Ciencia e Tecnologia. The work of SC is supported by a PhD grant from the same institution (ref. SFRH/BD/22863/2005)

    Thinking PubMed: an innovative system for mental health domain

    Get PDF
    Information regarding mental illness is dispersed over various resources but even within a specific resource, such as PubMed, it is difficult to link this information, to share it and find specific information when needed. Specific and targeted searches are very difficult with current search engines as they look for the specific string of letters within the text rather than its meaning.In this paper we present Thinking PubMed as a system that results from synergy of ontology and data mining technologies and performs intelligent information searches using the domain ontology. Furthermore, the Thinking PubMed analyzes and links the retrieved information, and extracts hidden patterns and knowledge using data mining algorithms. This is a new generation of information-seeking tool where the ontology and data-mining work in concert to increase the value of the available information

    Advances in automatic terminology processing: methodology and applications in focus

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.The information and knowledge era, in which we are living, creates challenges in many fields, and terminology is not an exception. The challenges include an exponential growth in the number of specialised documents that are available, in which terms are presented, and the number of newly introduced concepts and terms, which are already beyond our (manual) capacity. A promising solution to this ‘information overload’ would be to employ automatic or semi-automatic procedures to enable individuals and/or small groups to efficiently build high quality terminologies from their own resources which closely reflect their individual objectives and viewpoints. Automatic terminology processing (ATP) techniques have already proved to be quite reliable, and can save human time in terminology processing. However, they are not without weaknesses, one of which is that these techniques often consider terms to be independent lexical units satisfying some criteria, when terms are, in fact, integral parts of a coherent system (a terminology). This observation is supported by the discussion of the notion of terms and terminology and the review of existing approaches in ATP presented in this thesis. In order to overcome the aforementioned weakness, we propose a novel methodology in ATP which is able to extract a terminology as a whole. The proposed methodology is based on knowledge patterns automatically extracted from glossaries, which we considered to be valuable, but overlooked resources. These automatically identified knowledge patterns are used to extract terms, their relations and descriptions from corpora. The extracted information can facilitate the construction of a terminology as a coherent system. The study also aims to discuss applications of ATP, and describes an experiment in which ATP is integrated into a new NLP application: multiplechoice test item generation. The successful integration of the system shows that ATP is a viable technology, and should be exploited more by other NLP applications
    corecore