3,472 research outputs found

    A Survey and Taxonomy of Sequential Recommender Systems for E-commerce Product Recommendation

    Get PDF
    E-commerce recommendation systems facilitate customers’ purchase decision by recommending products or services of interest (e.g., Amazon). Designing a recommender system tailored toward an individual customer’s need is crucial for retailers to increase revenue and retain customers’ loyalty. As users’ interests and preferences change with time, the time stamp of a user interaction (click, view or purchase event) is an important characteristic to learn sequential patterns from these user interactions and, hence, understand users’ long- and short-term preferences to predict the next item(s) for recommendation. This paper presents a taxonomy of sequential recommendation systems (SRecSys) with a focus on e-commerce product recommendation as an application and classifies SRecSys under three main categories as: (i) traditional approaches (sequence similarity, frequent pattern mining and sequential pattern mining), (ii) factorization and latent representation (matrix factorization and Markov models) and (iii) neural network-based approaches (deep neural networks, advanced models). This classification contributes towards enhancing the understanding of existing SRecSys in the literature with the application domain of e-commerce product recommendation and provides current status of the solutions available alongwith future research directions. Furthermore, a classification of surveyed systems according to eight important key features supported by the techniques along with their limitations is also presented. A comparative performance analysis of the presented SRecSys based on experiments performed on e-commerce data sets (Amazon and Online Retail) showed that integrating sequential purchase patterns into the recommendation process and modeling users’ sequential behavior improves the quality of recommendations

    Parallel Prediction Method of Knowledge Proficiency Based on Bloom’s Cognitive Theory

    Get PDF
    Knowledge proficiency refers to the extent to which students master knowledge and reflects their cognitive status. To accurately assess knowledge proficiency, various pedagogical theories have emerged. Bloom’s cognitive theory, proposed in 1956 as one of the classic theories, follows the cognitive progression from foundational to advanced levels, categorizing cognition into multiple tiers including “knowing”, “understanding”, and “application”, thereby constructing a hierarchical cognitive structure. This theory is predominantly employed to frame the design of teaching objectives and guide the implementation of teaching activities. Additionally, due to the large number of students in real-world online education systems, the time required to calculate knowledge proficiency is significantly high and unacceptable. To ensure the applicability of this method in large-scale systems, there is a substantial demand for the design of a parallel prediction model to assess knowledge proficiency. The research in this paper is grounded in Bloom’s Cognitive theory, and a Bloom Cognitive Diagnosis Parallel Model (BloomCDM) for calculating knowledge proficiency is designed based on this theory. The model is founded on the concept of matrix decomposition. In the theoretical modeling phase, hierarchical and inter-hierarchical assumptions are initially established, leading to the abstraction of the mathematical model. Subsequently, subject features are mapped onto the three-tier cognitive space of “knowing”, “understanding”, and “applying” to derive the posterior distribution of the target parameters. Upon determining the objective function of the model, both student and topic characteristic parameters are computed to ascertain students’ knowledge proficiency. During the modeling process, in order to formalize the mathematical expressions of “understanding” and “application”, the notions of “knowledge group” and “higher-order knowledge group” are introduced, along with a parallel method for identifying the structure of higher-order knowledge groups. Finally, the experiments in this paper validate that the model can accurately diagnose students’ knowledge proficiency, affirming the scientific and meaningful integration of Bloom’s cognitive hierarchy in knowledge proficiency assessment

    Causal Inference in Recommender Systems: A Survey and Future Directions

    Full text link
    Recommender systems have become crucial in information filtering nowadays. Existing recommender systems extract user preferences based on the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, unfortunately, the real world is driven by causality, not just correlation, and correlation does not imply causation. For instance, recommender systems might recommend a battery charger to a user after buying a phone, where the latter can serve as the cause of the former; such a causal relation cannot be reversed. Recently, to address this, researchers in recommender systems have begun utilizing causal inference to extract causality, thereby enhancing the recommender system. In this survey, we offer a comprehensive review of the literature on causal inference-based recommendation. Initially, we introduce the fundamental concepts of both recommender system and causal inference as the foundation for subsequent content. We then highlight the typical issues faced by non-causality recommender system. Following that, we thoroughly review the existing work on causal inference-based recommender systems, based on a taxonomy of three-aspect challenges that causal inference can address. Finally, we discuss the open problems in this critical research area and suggest important potential future works.Comment: Accepted by ACM Transactions on Information Systems (TOIS

    Logging Stress and Anxiety Using a Gamified Mobile-based EMA Application, and Emotion Recognition Using a Personalized Machine Learning Approach

    Get PDF
    According to American Psychological Association (APA) more than 9 in 10 (94 percent) adults believe that stress can contribute to the development of major health problems, such as heart disease, depression, and obesity. Due to the subjective nature of stress, and anxiety, it has been demanding to measure these psychological issues accurately by only relying on objective means. In recent years, researchers have increasingly utilized computer vision techniques and machine learning algorithms to develop scalable and accessible solutions for remote mental health monitoring via web and mobile applications. To further enhance accuracy in the field of digital health and precision diagnostics, there is a need for personalized machine-learning approaches that focus on recognizing mental states based on individual characteristics, rather than relying solely on general-purpose solutions. This thesis focuses on conducting experiments aimed at recognizing and assessing levels of stress and anxiety in participants. In the initial phase of the study, a mobile application with broad applicability (compatible with both Android and iPhone platforms) is introduced (we called it STAND). This application serves the purpose of Ecological Momentary Assessment (EMA). Participants receive daily notifications through this smartphone-based app, which redirects them to a screen consisting of three components. These components include a question that prompts participants to indicate their current levels of stress and anxiety, a rating scale ranging from 1 to 10 for quantifying their response, and the ability to capture a selfie. The responses to the stress and anxiety questions, along with the corresponding selfie photographs, are then analyzed on an individual basis. This analysis focuses on exploring the relationships between self-reported stress and anxiety levels and potential facial expressions indicative of stress and anxiety, eye features such as pupil size variation and eye closure, and specific action units (AUs) observed in the frames over time. In addition to its primary functions, the mobile app also gathers sensor data, including accelerometer and gyroscope readings, on a daily basis. This data holds potential for further analysis related to stress and anxiety. Furthermore, apart from capturing selfie photographs, participants have the option to upload video recordings of themselves while engaging in two neuropsychological games. These recorded videos are then subjected to analysis in order to extract pertinent features that can be utilized for binary classification of stress and anxiety (i.e., stress and anxiety recognition). The participants that will be selected for this phase are students aged between 18 and 38, who have received recent clinical diagnoses indicating specific stress and anxiety levels. In order to enhance user engagement in the intervention, gamified elements - an emerging trend to influence user behavior and lifestyle - has been utilized. Incorporating gamified elements into non-game contexts (e.g., health-related) has gained overwhelming popularity during the last few years which has made the interventions more delightful, engaging, and motivating. In the subsequent phase of this research, we conducted an AI experiment employing a personalized machine learning approach to perform emotion recognition on an established dataset called Emognition. This experiment served as a simulation of the future analysis that will be conducted as part of a more comprehensive study focusing on stress and anxiety recognition. The outcomes of the emotion recognition experiment in this study highlight the effectiveness of personalized machine learning techniques and bear significance for the development of future diagnostic endeavors. For training purposes, we selected three models, namely KNN, Random Forest, and MLP. The preliminary performance accuracy results for the experiment were 93%, 95%, and 87% respectively for these models

    A Comprehensive Exploration of Personalized Learning in Smart Education: From Student Modeling to Personalized Recommendations

    Full text link
    With the development of artificial intelligence, personalized learning has attracted much attention as an integral part of intelligent education. China, the United States, the European Union, and others have put forward the importance of personalized learning in recent years, emphasizing the realization of the organic combination of large-scale education and personalized training. The development of a personalized learning system oriented to learners' preferences and suited to learners' needs should be accelerated. This review provides a comprehensive analysis of the current situation of personalized learning and its key role in education. It discusses the research on personalized learning from multiple perspectives, combining definitions, goals, and related educational theories to provide an in-depth understanding of personalized learning from an educational perspective, analyzing the implications of different theories on personalized learning, and highlighting the potential of personalized learning to meet the needs of individuals and to enhance their abilities. Data applications and assessment indicators in personalized learning are described in detail, providing a solid data foundation and evaluation system for subsequent research. Meanwhile, we start from both student modeling and recommendation algorithms and deeply analyze the cognitive and non-cognitive perspectives and the contribution of personalized recommendations to personalized learning. Finally, we explore the challenges and future trajectories of personalized learning. This review provides a multidimensional analysis of personalized learning through a more comprehensive study, providing academics and practitioners with cutting-edge explorations to promote continuous progress in the field of personalized learning.Comment: 82 pages,5 figure

    User Modeling and User Profiling: A Comprehensive Survey

    Full text link
    The integration of artificial intelligence (AI) into daily life, particularly through information retrieval and recommender systems, has necessitated advanced user modeling and profiling techniques to deliver personalized experiences. These techniques aim to construct accurate user representations based on the rich amounts of data generated through interactions with these systems. This paper presents a comprehensive survey of the current state, evolution, and future directions of user modeling and profiling research. We provide a historical overview, tracing the development from early stereotype models to the latest deep learning techniques, and propose a novel taxonomy that encompasses all active topics in this research area, including recent trends. Our survey highlights the paradigm shifts towards more sophisticated user profiling methods, emphasizing implicit data collection, multi-behavior modeling, and the integration of graph data structures. We also address the critical need for privacy-preserving techniques and the push towards explainability and fairness in user modeling approaches. By examining the definitions of core terminology, we aim to clarify ambiguities and foster a clearer understanding of the field by proposing two novel encyclopedic definitions of the main terms. Furthermore, we explore the application of user modeling in various domains, such as fake news detection, cybersecurity, and personalized education. This survey serves as a comprehensive resource for researchers and practitioners, offering insights into the evolution of user modeling and profiling and guiding the development of more personalized, ethical, and effective AI systems.Comment: 71 page

    A Constraint Guided Progressive Sequential Mining Waterfall Model for CRM

    Get PDF
    CRM has been realized as a core for the growth of any enterprise. This requires both the customer satisfaction and fulfillment of customer requirement, which can only be achieved by analyzing consumer behaviors. The data mining has become an effective tool since often the organizations have large databases of information on customers. However, the traditional data mining techniques have no relevant mechanism to provide guidance for business understanding, model selection and dynamic changes made in the databases. This article helps in understanding and maintaining the requirement of continuous data mining process for CRM in dynamic environment. A novel integrative model, Constraint Guided Progressive SequentialMiningWaterfall (CGPSMW) for knowledge discovery process is proposed. The key performance factors that include management of marketing, sales, knowledge, technology among others those are required for the successful implementation of CRM. We have studied how the sequential pattern mining performed on progressive databases instead of static databases in conjunction with these CRM performance indicators can result in highly efficient and effective useful patterns. This would further help in classification of customers which any enterprise should focus on to achieve its growth and benefit. An organization has limited number of resources that it can only use for valuable customers to reap the fruits of CRM. The different steps of the proposed CGP-SMW model give a detailed elaboration how to keep focus on these customers in dynamic scenarios

    Social Data Mining for Crime Intelligence

    Get PDF
    With the advancement of the Internet and related technologies, many traditional crimes have made the leap to digital environments. The successes of data mining in a wide variety of disciplines have given birth to crime analysis. Traditional crime analysis is mainly focused on understanding crime patterns, however, it is unsuitable for identifying and monitoring emerging crimes. The true nature of crime remains buried in unstructured content that represents the hidden story behind the data. User feedback leaves valuable traces that can be utilised to measure the quality of various aspects of products or services and can also be used to detect, infer, or predict crimes. Like any application of data mining, the data must be of a high quality standard in order to avoid erroneous conclusions. This thesis presents a methodology and practical experiments towards discovering whether (i) user feedback can be harnessed and processed for crime intelligence, (ii) criminal associations, structures, and roles can be inferred among entities involved in a crime, and (iii) methods and standards can be developed for measuring, predicting, and comparing the quality level of social data instances and samples. It contributes to the theory, design and development of a novel framework for crime intelligence and algorithm for the estimation of social data quality by innovatively adapting the methods of monitoring water contaminants. Several experiments were conducted and the results obtained revealed the significance of this study in mining social data for crime intelligence and in developing social data quality filters and decision support systems
    • …
    corecore