11 research outputs found

    Photonic Physical Unclonable Functions: From the Concept to Fully Functional Device Operating in the Field

    Full text link
    The scope of this paper is to demonstrate a fully working and compact photonic Physical Unclonable Function (PUF) device capable of operating in real life scenarios as an authentication mechanism and random number generator. For this purpose, an extensive experimental investigation of a Polymer Optical Fiber (POF) and a diffuser as PUF tokens is performed and the most significant properties are evaluated using the proper mathematical tools. Two different software algorithms, the Random Binary Method (RBM) and Singular Value Decomposition (SVD), were tested for optimized key extraction and error correction codes have been incorporated for enhancing key reproducibility. By taking into consideration the limitations and overall performance derived by the experimental evaluation of the system, the designing details towards the implementation of a miniaturized, energy efficient and low-cost device are extensively discussed. The performance of the final device is thoroughly evaluated, demonstrating a long-term stability of 1 week, an operating temperature range of 50C, an exponentially large pool of unique Challenge-Response Pairs (CRPs), recovery after power failure and capability of generating NIST compliant true random numbers

    A Novel RFID Authentication Protocol based on Elliptic Curve Cryptosystem

    Get PDF
    Recently, many researchers have proposed RFID authentication protocols. These protocols are mainly consists of two types: symmetric key based and asymmetric key based. The symmetric key based systems usually have some weaknesses such as suffering brute force, de-synchronization, impersonation, and tracing attacks. In addition, the asymmetric key based systems usually suffer from impersonation, man-in-the-middle, physical, and tracing attacks. To get rid of those weaknesses and reduce the system workload, we adopt elliptic curve cryptosystem (ECC) to construct an asymmetric key based RFID authentication system. Our scheme needs only two passes and can resist various kinds of attacks. It not only outperforms the other RFID schemes having the same security level but also is the most efficient

    New Family of Stream Ciphers as Physically Clone-Resistant VLSI-Structures

    Full text link
    A new large class of 21002^{100} possible stream ciphers as keystream generators KSGs, is presented. The sample cipher-structure-concept is based on randomly selecting a set of 16 maximum-period Nonlinear Feedback Shift Registers (NLFSRs). A non-linear combining function is merging the 16 selected sequences. All resulting stream ciphers with a total state-size of 223 bits are designed to result with the same security level and have a linear complexity exceeding 2812^{81} and a period exceeding 21612^{161}. A Secret Unknown Cipher (SUC) is created randomly by selecting one cipher from that class of 21002^{100} ciphers. SUC concept was presented recently as a physical security anchor to overcome the drawbacks of the traditional analog Physically Unclonable Functions (PUFs). Such unknown ciphers may be permanently self-created within System-on-Chip SoC non-volatile FPGA devices to serve as a digital clone-resistant structure. Moreover, a lightweight identification protocol is presented in open networks for physically identifying such SUC structures in FPGA-devices. The proposed new family may serve for lightweight realization of clone-resistant identities in future self-reconfiguring SoC non-volatile FPGAs. Such self-reconfiguring FPGAs are expected to be emerging in the near future smart VLSI systems. The security analysis and hardware complexities of the resulting clone-resistant structures are evaluated and shown to exhibit scalable security levels even for post-quantum cryptography.Comment: 24 pages, 7 Figures, 3 Table

    Privacy and Reader-first Authentication in Vaudenay\u27s RFID Model with Temporary State Disclosure

    Get PDF
    Privacy and mutual authentication under corruption with temporary state disclosure are two significant requirements for real-life applications of RFID schemes. No RFID scheme is known so far to meet these two requirements. In this paper we propose two practical RFID schemes that fill this gap. The first one achieves destructive privacy, while the second one narrow destructive privacy, in Vaudenay\u27s model with temporary state disclosure. Both of them provide mutual (reader-first) authentication. In order to achieve these privacy levels we use Physically Unclonable Functions (PUFs) to assure that the internal secret of the tag remains hidden against an adversary with invasive capabilities. Our first RFID scheme cannot be desynchronized for more than one step, while the second one avoids the use of random generators on tags. Detailed security and privacy proofs are provided

    Destructive Privacy and Mutual Authentication in Vaudenay\u27s RFID Model

    Get PDF
    With the large scale adoption of the Radio Frequency Identification (RFID) technology, a variety of security and privacy risks need to be addressed. Arguably, the most general and used RFID security and privacy model is the one proposed by Vaudenay. It considers concurrency, corruption (with or without destruction) of tags, and the possibility to get the result of a protocol session on the reader side. Security in Vaudenay\u27s model embraces two forms, unilateral (tag) authentication and mutual (tag and reader) authentication, while privacy is very flexible and dependent on the adversary class. The construction of destructive private RFID schemes in Vaudenay\u27s model was left open when the model was initially proposed. It was solved three years later in the context of unilateral authentication. In this paper we propose a destructive private and mutual authentication RFID scheme in Vaudenay\u27s model. The security and privacy of our scheme are rigorously proved. We also show that the only two RFID schemes proposed so far that claimed to achieve destructive privacy and mutual authentication are not even narrow forward private. Thus, our RIFD scheme is the first one to achieve this kind of privacy and security. The paper also points out some privacy proof flaws that have been met in previous constructions

    Model Building and Security Analysis of PUF-Based Authentication

    Get PDF
    In the context of hardware systems, authentication refers to the process of confirming the identity and authenticity of chip, board and system components such as RFID tags, smart cards and remote sensors. The ability of physical unclonable functions (PUF) to provide bitstrings unique to each component can be leveraged as an authentication mechanism to detect tamper, impersonation and substitution of such components. However, authentication requires a strong PUF, i.e., one capable of producing a large, unique set of bits per device, and, unlike secret key generation for encryption, has additional challenges that relate to machine learning attacks, protocol attacks and constraints on device resources. We describe the requirements for PUF-based authentication, and present a PUF primitive and protocol designed for authentication in resource constrained devices. Our experimental results are derived from a 28 nm Xilinx FPGA. In the authentication scenario, strong PUFs are required since the adversary could collect a subset of challenges and response pairsto build a model and predict the responses for unseen challenges. Therefore, strong PUFs need to provide exponentially large challenge space and be resilient to model building attacks. We investigate the security properties of a Hardware-embedded Delay PUF called HELP which leverages within-die variations in path delays within a hardware-implemented macro (functional unit) as the entropy source. Several features of the HELP processing engine significantly improve its resistance to model-building attacks. We also investigate a novel technique that significantly improves the statistically quality of the generated bitstring for HELP. Stability across environmental variations such as temperature and voltage, is critically important for Physically Unclonable Functions (PUFs). Nearly all existing PUF systems to date need a mechanism to deal with “bit flips” when exact regeneration of the bitstring is required, e.g., for cryptographic applications. Error correction (ECC) and error avoidance schemes have been proposed but both of these require helper data to be stored for the regeneration process. Unfortunately, helper data adds time and area overhead to the PUF system and provides opportunities for adversaries to reverse engineer the secret bitstring. We propose a non-volatile memory-based (NVM) PUF that is able to avoid bit flips without requiring any type of helper data. We describe the technique in the context of emerging nano-devices, in particular, resistive random access memory (Memristor) cells, but the methodology is applicable to any type of NVM including Flash

    Attacking and Defending Emerging Computer Systems Using The Memory Remanence Effect

    Full text link
    In computer systems, manufacturing variances and hardware effects are typically abstracted away by the software layer. This dissertation explores how these effects, specifically memory remanence, can be used both as an attack vector and a tool to defend emerging computing systems. To achieve this, we show how time-keeping, anonymity, and authenticity can be affected by memory remanence. In terms of attacks, we explore the deanonymizing effect of approximate computing in the context of approximate memory in Probable Cause. We show how data passing through an approximate memory is watermarked with a device specific tag that points the attacker back to the device. In terms of defenses, we first present TARDIS: an approach to provide a notion of time for transiently powered embedded devices without requiring any hardware modification using remanence effect of SRAM. TARDIS allows these devices to keep a coarse-grained notion of time without the need for a running clock. Second, we propose data retention voltage of memory cells as a new type of physical unclonable function that allows for low-cost authentication and counterfeit resistance in computer systems.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/136985/1/rahmati_1.pd
    corecore