67 research outputs found

    Coupling Mars Ground and Orbital Views: Generate Viewsheds of Mastcam Images From the Curiosity Rover, Using ArcGISÂź and Public Datasets

    Get PDF
    The Mastcam (Mast Camera) instrument onboard the NASA Curiosity rover provides an exclusive view of Mars: High‐resolution color images from Mastcam allow users to study Gale crater's geologic terrains along Curiosity's path. These ground observations complement the spatially broader views of Gale crater provided by spacecrafts from orbit. However, for a given Mastcam image, it can be challenging to locate the corresponding terrains on the orbital view. No method for locating Mastcam images onto orbital images had been made publicly available. The procedure presented here allows users to generate Mastcam image viewsheds, using ArcGIS¼ software, its built‐in Viewshed tool¼, and public Mars datasets. This procedure locates onto Mars orbital view the terrains that are observed in a given Mastcam image. Because this procedure uses public datasets, it is applicable to available Mastcam images and to the future ones that will be acquired along the Curiosity rover's path. This procedure can be used by the public to assess scientific questions regarding Martian surface processes and geologic history. In addition, this procedure can be utilized as pedagogic GIS material by the Geosciences or Planetary Sciences communities, for enhancing students' skillsets in GIS and provide students with experience working with datasets from both orbiter and rover Mars missions

    Coupling Mars Ground and Orbital Views: Generate Viewsheds of Mastcam Images From the Curiosity Rover, Using ArcGISÂź and Public Datasets

    Get PDF
    The Mastcam (Mast Camera) instrument onboard the NASA Curiosity rover provides an exclusive view of Mars: High‐resolution color images from Mastcam allow users to study Gale crater's geologic terrains along Curiosity's path. These ground observations complement the spatially broader views of Gale crater provided by spacecrafts from orbit. However, for a given Mastcam image, it can be challenging to locate the corresponding terrains on the orbital view. No method for locating Mastcam images onto orbital images had been made publicly available. The procedure presented here allows users to generate Mastcam image viewsheds, using ArcGIS¼ software, its built‐in Viewshed tool¼, and public Mars datasets. This procedure locates onto Mars orbital view the terrains that are observed in a given Mastcam image. Because this procedure uses public datasets, it is applicable to available Mastcam images and to the future ones that will be acquired along the Curiosity rover's path. This procedure can be used by the public to assess scientific questions regarding Martian surface processes and geologic history. In addition, this procedure can be utilized as pedagogic GIS material by the Geosciences or Planetary Sciences communities, for enhancing students' skillsets in GIS and provide students with experience working with datasets from both orbiter and rover Mars missions

    Late-Stage Diagenetic Concretions in the Murray Formation, Gale Crater, Mars

    Get PDF
    Concretions are prevalent features in the generally lacustrine deposits of the Murray formation in Gale crater. In this work, we document the morphologic, textural, and chemical properties of these concretions throughout 300 m of Murray formation stratigraphy from Mars Science Laboratory observations between Sols 750–1900. We interpret these observations to constrain the timing and composition of post-depositional fluid events at Gale crater. We determine that the overall diversity of concretion morphology, size, texture, and chemistry throughout the Murray formation indicates that concretions formed in multiple, likely late diagenetic, episodes with varying fluid chemistries. Four major concretion assemblages are observed at distinct stratigraphic intervals and approximately correlate with major distinct chemical enrichments in Mg-S-Ni-Cl, Mn-P, and Ca-S, among other local enrichments. Different concretion size populations and complex relationships between concretions and veins also suggest multiple precipitation events at Gale crater. Many concretions likely formed during late diagenesis after sediment compaction and lithification, based on observations of concretions preserving primary host rock laminations without differential compaction. An upsection decrease in overall concretion size corresponds to an inferred upsection decrease in porosity and permeability, thus constraining concretion formation as postdating fluid events that produced initial cementation and porosity loss. The combined observations of late diagenetic concretions and distinct chemical enrichments related to concretions allow constraints to be placed on the chemistry of late stage fluids at Gale crater. Collectively, concretion observations from this work and previous studies of other diagenetic features (veins, alteration halos) suggest at least six post-depositional events that occurred at Gale crater after the deposition of the Murray formation

    Mars surface context cameras past, present and future

    Get PDF
    Matthew Gunn and Claire Cousins are Co-Investigators on the European Space Agency ExoMars Panoramic Camera instrument (PI Andrew Coates; MSSL/University College London, London, United Kingdom). C Cousins is funded by the Royal Society of Edinburgh on a Personal Research Fellowship. Matthew Gunn acknowledges UK Space Agency grants ST/L001454/1, ST/N003349/1 and ST/N006410/1.Mars has been the focus of robotic space exploration since the 1960s, in which time there have been over 40 missions, some successful, some not. Camera systems have been a core component of all instrument payloads sent to the Martian surface, harnessing some combination of monochrome, color, multispectral, and stereo imagery. Together, these datasets provide the geological context to a mission, which over the decades has included the characterization and spatial mapping of geological units and associated stratigraphy, charting active surface processes such as dust devils and water ice sublimation, and imaging the robotic manipulation of samples via scoops (Viking), drills (Mars Science Laboratory (MSL) Curiosity), and grinders (Mars Exploration Rovers). Through the decades, science context imaging has remained an integral part of increasingly advanced analytical payloads, with continual advances in spatial and spectral resolution, radiometric and geometric calibration, and image analysis techniques. Mars context camera design has encompassed major technological shifts, from single photomultiplier tube detectors to megapixel charged-couple-devices, and from multichannel to Bayer filter color imaging. Here we review the technological capability and evolution of science context imaging instrumentation resulting from successful surface missions to Mars, and those currently in development for planned future missions.Publisher PDFPeer reviewe

    Surface energy budget and thermal inertia at Gale Crater: Calculations from ground‐based measurements

    Full text link
    The analysis of the surface energy budget (SEB) yields insights into soil‐atmosphere interactions and local climates, while the analysis of the thermal inertia ( I ) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ~10 4  m 2 to ~10 7  m 2 . Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ~10 2  m 2 . We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I  = 452 J m −2  K −1  s −1/2 (SI units used throughout this article) is found at YKB followed by PL with I  = 306 and RCK with I  = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars. Key Points We calculate the thermal inertia and surface energy budget at Gale Crater We use MSL REMS measurements for our calculationsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108664/1/jgre20287.pd

    Active Ground Patterns Near Mars' Equator in the Glen Torridon Region of Gale Crater

    Get PDF
    On Mars, near the equator, much of the terrain in Gale Crater consists of bedrock outcrops separated by relatively smooth, uniform regolith surfaces. In scattered sites, however, distinct patterns—in the form and texture of the ground surface—contrast sharply with the typical terrain and with eolian bedforms. This paper focuses on these diverse, intriguing ground patterns. They include ∌1 to >10 m-long linear disruptions of uniform regolith surfaces, alignments, and other arrangements of similar-sized rock fragments and shallow, ∌0.1 m-wide sandy troughs 1–10 m in length. Similar features were recognized early in the Mars Science Laboratory (MSL) mission, but they received only limited attention until Curiosity, the MSL rover, encountered striking examples in the Glen Torridon region. Herein, the ground patterns are illustrated with rover images. Potential mechanisms are briefly discussed in the context of the bedrock composition and atmospheric conditions documented by Curiosity. The evidence suggests that the patterns are active forms of spontaneous granular organization. It leads to the hypothesis that the patterns arise and develop from miniscule, inferred cyclic expansion and contraction of the bedrock and regolith, likely driven by oscillating transfers of energy and moisture between the atmosphere and the terrain. The hypothesis has significant implications for studies of contemporary processes on Mars on both sides of the atmosphere-lithosphere interface. The ground patterns, as well as ripples and dunes formed by the wind, constitute remarkable extra-terrestrial examples of granular self-organization, complex phenomena well known in diverse systems on Earth.A. G. FairĂ©n was supported by the ERC-CoG #818602. M.-P. Zorzano has been partially funded by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “MarĂ­a de Maeztu”-Centro de AstrobiologĂ­a (INTA-CSIC) and by the Spanish Ministry of Science and Innovation (PID2019-104205GB-C21). Last but not least, B. Hallet and R. S. Sletten gratefully acknowledge sustained funding for their work through the MSL mission in a NASA grant awarded to MSSS

    The PanCam Instrument for the ExoMars Rover

    Get PDF
    The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror.publishersversionPeer reviewe

    Integrating Machine Learning for Planetary Science: Perspectives for the Next Decade

    Full text link
    Machine learning (ML) methods can expand our ability to construct, and draw insight from large datasets. Despite the increasing volume of planetary observations, our field has seen few applications of ML in comparison to other sciences. To support these methods, we propose ten recommendations for bolstering a data-rich future in planetary science.Comment: 10 pages (expanded citations compared to 8 page submitted version for decadal survey), 3 figures, white paper submitted to the Planetary Science and Astrobiology Decadal Survey 2023-203

    Late-Stage Diagenetic Concretions in the Murray Formation, Gale Crater, Mars

    Get PDF
    Concretions are prevalent features in the generally lacustrine deposits of the Murray formation in Gale crater. In this work, we document the morphologic, textural, and chemical properties of these concretions throughout 300 m of Murray formation stratigraphy from Mars Science Laboratory observations between Sols 750–1900. We interpret these observations to constrain the timing and composition of post-depositional fluid events at Gale crater. We determine that the overall diversity of concretion morphology, size, texture, and chemistry throughout the Murray formation indicates that concretions formed in multiple, likely late diagenetic, episodes with varying fluid chemistries. Four major concretion assemblages are observed at distinct stratigraphic intervals and approximately correlate with major distinct chemical enrichments in Mg-S-Ni-Cl, Mn-P, and Ca-S, among other local enrichments. Different concretion size populations and complex relationships between concretions and veins also suggest multiple precipitation events at Gale crater. Many concretions likely formed during late diagenesis after sediment compaction and lithification, based on observations of concretions preserving primary host rock laminations without differential compaction. An upsection decrease in overall concretion size corresponds to an inferred upsection decrease in porosity and permeability, thus constraining concretion formation as postdating fluid events that produced initial cementation and porosity loss. The combined observations of late diagenetic concretions and distinct chemical enrichments related to concretions allow constraints to be placed on the chemistry of late stage fluids at Gale crater. Collectively, concretion observations from this work and previous studies of other diagenetic features (veins, alteration halos) suggest at least six post-depositional events that occurred at Gale crater after the deposition of the Murray formation

    Introductory Chapter: Recent Advances in Image Restoration

    Get PDF
    • 

    corecore