1,285 research outputs found

    SatERN: a PEP-less solution for satellite communications

    Get PDF
    In networks with very large delay like satellite IPbased networks, standard TCP is unable to correctly grab the available resources. To overcome this problem, Performance Enhancing Proxies (PEPs), which break the end-to-end connection and simulate a receiver close enough to the sender, can be placed before the links with large delay. Although splitting PEPs does not modify the transport protocol at the end nodes, they prevent the use of security protocols such as IPsec. In this paper, we propose solutions to replace the use of PEPs named SatERN. This proposal, based on Explicit Rate Notification (ERN) protocols over IP, does not split connections and is compliant with IP-in-IP tunneling solutions. Finally, we show that the SatERN solution achieves high satellite link utilization and fairness of the satellite traffic

    Random Access Game and Medium Access Control Design

    Get PDF
    Motivated partially by a control-theoretic viewpoint, we propose a game-theoretic model, called random access game, for contention control. We characterize Nash equilibria of random access games, study their dynamics, and propose distributed algorithms (strategy evolutions) to achieve Nash equilibria. This provides a general analytical framework that is capable of modeling a large class of system-wide quality-of-service (QoS) models via the specification of per-node utility functions, in which system-wide fairness or service differentiation can be achieved in a distributed manner as long as each node executes a contention resolution algorithm that is designed to achieve the Nash equilibrium. We thus propose a novel medium access method derived from carrier sense multiple access/collision avoidance (CSMA/CA) according to distributed strategy update mechanism achieving the Nash equilibrium of random access game. We present a concrete medium access method that adapts to a continuous contention measure called conditional collision probability, stabilizes the network into a steady state that achieves optimal throughput with targeted fairness (or service differentiation), and can decouple contention control from handling failed transmissions. In addition to guiding medium access control design, the random access game model also provides an analytical framework to understand equilibrium and dynamic properties of different medium access protocols

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users

    Design and analysis of TCP AIMD in wireless networks

    Get PDF
    The class of additive-increase/multiplicative-decrease (AIMD) algorithms constitutes a key mechanism for congestion control in modern communication networks, like the current Internet. The algorithmic behaviour may, however, be distorted when wireless links are present. Specifically, spurious window reductions may be triggered due to packet reordering and non-congestive loss. In this paper, we develop a framework for AIMD in TCP to analyze the aforementioned problem. The framework enables a systematic analysis of the existing AIMD-based TCP variants and assists in the design of new TCP variants. It classifies the existing AIMD-based TCP variants into two main streams, known as compensators and differentiators, and develops a generic expression that covers the rate adaptation processes of both approaches. It further identifies a new approach in enhancing the performance of TCP, known as the compensation scheme. A tax-rebate approach is proposed as an approximation of the compensation scheme, and used to enhance the AIMD-based TCP variants to offer unified solutions for effective congestion control, sequencing control, and error control. In traditional wired networks, the new family of TCP variants with the proposed enhancements automatically preserves the same inter-flow fairness and TCP friendliness. We have conducted a series of simulations to examine their performance under various network scenarios. In most scenarios, significant performance gains are attained. © 2013 IEEE.published_or_final_versio

    Network Coded TCP (CTCP) Performance over Satellite Networks

    Get PDF
    We show preliminary results for the performance of Network Coded TCP (CTCP) over large latency networks. While CTCP performs very well in networks with relatively short RTT, the slow-start mechanism currently employed does not adequately fill the available bandwidth when the RTT is large. Regardless, we show that CTCP still outperforms current TCP variants (i.e., Cubic TCP and Hybla TCP) for high packet loss rates (e.g., >2.5%). We then explore the possibility of a modified congestion control mechanism based off of H-TCP that opens the congestion window quickly to overcome the challenges of large latency networks. Preliminary results are provided that show the combination of network coding with an appropriate congestion control algorithm can provide gains on the order of 20 times that of existing TCP variants. Finally, we provide a discussion of the future work needed to increase CTCP's performance in these networks.Comment: 4 pages, 4 figures, Accepted at SPACOMM 201
    corecore