2 research outputs found

    Radar Target Classification Using an Evolutionary Extreme Learning Machine Based on Improved Quantum-Behaved Particle Swarm Optimization

    Get PDF
    A novel evolutionary extreme learning machine (ELM) based on improved quantum-behaved particle swarm optimization (IQPSO) for radar target classification is presented in this paper. Quantum-behaved particle swarm optimization (QPSO) has been used in ELM to solve the problem that ELM needs more hidden nodes than conventional tuning-based learning algorithms due to the random set of input weights and hidden biases. But the method for calculating the characteristic length of Delta potential well of QPSO may reduce the global search ability of the algorithm. To solve this issue, a new method to calculate the characteristic length of Delta potential well is proposed in this paper. Experimental results based on the benchmark functions validate the better performance of IQPSO against QPSO in most cases. The novel algorithm is also evaluated by using real-world datasets and radar data; the experimental results indicate that the proposed algorithm is more effective than BP, SVM, ELM, QPSO-ELM, and so on, in terms of real-time performance and accuracy

    Enhancing Electronic Nose Performance Based on a Novel QPSO-KELM Model

    No full text
    A novel multi-class classification method for bacteria detection termed quantum-behaved particle swarm optimization-based kernel extreme learning machine (QPSO-KELM) based on an electronic nose (E-nose) technology is proposed in this paper. Time and frequency domain features are extracted from E-nose signals used for detecting four different classes of wounds (uninfected and infected with Staphylococcu aureus, Escherichia coli and Pseudomonas aeruginosa) in this experiment. In addition, KELM is compared with five existing classification methods: Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), extreme learning machine (ELM), k-nearest neighbor (KNN) and support vector machine (SVM). Meanwhile, three traditional optimization methods including particle swarm optimization algorithm (PSO), genetic algorithm (GA) and grid search algorithm (GS) and four kernel functions (Gaussian kernel, linear kernel, polynomial kernel and wavelet kernel) for KELM are discussed in this experiment. Finally, the QPSO-KELM model is also used to deal with another two experimental E-nose datasets in the previous experiments. The experimental results demonstrate the superiority of QPSO-KELM in various E-nose applications
    corecore